找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016; 19th International C Sebastien Ourselin,Leo Joskowicz,William Wel

[復(fù)制鏈接]
樓主: counterfeit
41#
發(fā)表于 2025-3-28 15:32:01 | 只看該作者
42#
發(fā)表于 2025-3-28 19:35:25 | 只看該作者
43#
發(fā)表于 2025-3-28 22:54:58 | 只看該作者
44#
發(fā)表于 2025-3-29 04:35:09 | 只看該作者
Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networksonance imaging (rs-fMRI)). Therefore, integrating connectomics information in outcome prediction could improve prediction accuracy. To this end, we unprecedentedly devise a machine learning-based HGG prediction framework that can effectively extract valuable features from complex human brain connec
45#
發(fā)表于 2025-3-29 09:06:55 | 只看該作者
Mammographic Mass Segmentation with Online Learned Shape and Appearance Priors,proach is extensively validated on a large dataset constructed on DDSM. Results demonstrate that our online learned priors lead to substantial improvement in mass segmentation accuracy, compared with previous systems.
46#
發(fā)表于 2025-3-29 11:32:17 | 只看該作者
47#
發(fā)表于 2025-3-29 18:05:31 | 只看該作者
48#
發(fā)表于 2025-3-29 21:47:21 | 只看該作者
Robust Cancer Treatment Outcome Prediction Dealing with Small-Sized and Imbalanced Data from FDG-PEe proposed method aims to reduce the imprecision and overlaps between different classes in the selected feature subspace, thus finally improving the prediction accuracy. It has been evaluated by two clinical datasets, showing good performance.
49#
發(fā)表于 2025-3-30 01:08:29 | 只看該作者
,Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer’s Disease Diagnosis,lzheimer’s Disease Neuroimaging Initiative (ADNI) database. The effectiveness of our method is demonstrated by both the clearly improved prediction accuracy and the discovered brain regions and SNPs relevant to AD.
50#
發(fā)表于 2025-3-30 05:37:13 | 只看該作者
,Semi-supervised Hierarchical Multimodal Feature and Sample Selection for Alzheimer’s Disease Diagno we utilize both labeled and unlabeled data in the learning process, making our method semi-supervised. The finally selected features and samples are then used to train support vector machine (SVM) based classification models. Our method is evaluated on 702 subjects from the Alzheimer’s Disease Neur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太湖县| 通辽市| 雅江县| 滨州市| 景德镇市| 金溪县| 罗城| 隆回县| 时尚| 田林县| 车险| 晋江市| 安仁县| 聂拉木县| 凤阳县| 津市市| 屏山县| 古浪县| 天台县| 永修县| 长葛市| 大冶市| 濮阳市| 明水县| 台北县| 安宁市| 聊城市| 虎林市| 清涧县| 龙门县| 桐庐县| 昌平区| 万载县| 阿坝| 民县| 仁怀市| 正定县| 大悟县| 申扎县| 集贤县| 唐河县|