找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2012; 15th International C Nicholas Ayache,Hervé Delingette,Kensaku Mo

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:05:42 | 只看該作者
22#
發(fā)表于 2025-3-25 07:54:33 | 只看該作者
23#
發(fā)表于 2025-3-25 15:05:24 | 只看該作者
24#
發(fā)表于 2025-3-25 16:07:06 | 只看該作者
Self-similarity Weighted Mutual Information: A New Nonrigid Image Registration Metricstration is an active field of research. We propose a self-similarity weighted graph-based implementation of .-mutual information (.-MI) for nonrigid image registration. The new .lf .imilarity .-. (SeSaMI) metric takes local structures into account and is robust against signal non-stationarity and i
25#
發(fā)表于 2025-3-25 21:50:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:50:25 | 只看該作者
Selection of Optimal Hyper-Parameters for Estimation of Uncertainty in MRI-TRUS Registration of the ostate substructure and apex are not always visible which may make the seed placement sub-optimal. Based on an elastic model of the prostate created from MRI, where the prostate substructure and apex are clearly visible, we use a Bayesian approach to estimate the posterior distribution on deformatio
27#
發(fā)表于 2025-3-26 07:58:46 | 只看該作者
Globally Optimal Deformable Registration on a Minimum Spanning Tree Using Dense Displacement Samplin optimisation, which is prone to local minima. Recent advances in the mathematics and new programming methods enable these disadvantages to be overcome using discrete optimisation. In this paper, we present a new technique ., which employs a discrete .ns..isplacement .ampling for the deformable regi
28#
發(fā)表于 2025-3-26 11:25:52 | 只看該作者
29#
發(fā)表于 2025-3-26 14:40:38 | 只看該作者
Regional Manifold Learning for Deformable Registration of Brain MR Imagesdical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first le
30#
發(fā)表于 2025-3-26 17:43:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 09:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苗栗市| 涞水县| 沾益县| 鄂尔多斯市| 韶山市| 柘城县| 鄂尔多斯市| 鹿邑县| 九寨沟县| 邯郸市| 徐汇区| 阿瓦提县| 正宁县| 五原县| 山东| 肃宁县| 琼中| 贺兰县| 壤塘县| 扶风县| 龙州县| 奉新县| 拜城县| 吉隆县| 石城县| 天祝| 博客| 孟州市| 恭城| 保山市| 天水市| 喜德县| 赤壁市| 晴隆县| 神池县| 泰州市| 南城县| 通山县| 青神县| 黎平县| 色达县|