找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008; 11th International C Dimitris Metaxas,Leon Axel,Gábor Székely Con

[復(fù)制鏈接]
樓主: Hermit
11#
發(fā)表于 2025-3-23 12:06:57 | 只看該作者
A Discriminative Model-Constrained Graph Cuts Approach to Fully Automated Pediatric Brain Tumor Segmis a top-down segmentation approach based on a Markov random field (MRF) model that combines probabilistic boosting trees (PBT) and lower-level segmentation via graph cuts. The PBT algorithm provides a strong discriminative observation model that classifies tumor appearance while a spatial prior tak
12#
發(fā)表于 2025-3-23 16:48:52 | 只看該作者
13#
發(fā)表于 2025-3-23 21:07:41 | 只看該作者
A Bayesian Approach for Liver Analysis: Algorithm and Validation Studys. The method repeatedly applies multi-resolution, multi-class smoothed Bayesian classification followed by morphological adjustment and active contours refinement. It uses multi-class and voxel neighborhood information to compute an accurate intensity distribution function for each class. The metho
14#
發(fā)表于 2025-3-24 01:48:46 | 只看該作者
Classification of Suspected Liver Metastases Using fMRI Images: A Machine Learning Approachased statistical modeling to characterize colorectal hepatic metastases and follow their early hemodynamical changes. Changes in hepatic hemodynamics are evaluated from .-W fMRI images acquired during the breathing of air, air-.., and carbogen. A classification model is build to differentiate betwee
15#
發(fā)表于 2025-3-24 05:43:05 | 只看該作者
16#
發(fā)表于 2025-3-24 07:14:52 | 只看該作者
17#
發(fā)表于 2025-3-24 10:45:59 | 只看該作者
MRI Bone Segmentation Using Deformable Models and Shape Priors method is the combination of physically-based deformable models with shape priors. Models evolve under the influence of forces that exploit image information and prior knowledge on shape variations. The prior defines a Principal Component Analysis (PCA) of global shape variations and a Markov Rando
18#
發(fā)表于 2025-3-24 18:53:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:36:52 | 只看該作者
20#
發(fā)表于 2025-3-25 02:13:09 | 只看該作者
Toward Unsupervised Classification of Calcified Arterial Lesionsthe challenging problem of unsupervised calcified lesion classification. We propose an algorithm, . (UnSupervised Calcified Arterial Lesion Classification), that discriminates arterial lesions from non-arterial lesions. The proposed method first mines the characteristics of calcified lesions using a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙桃市| 巴彦县| 西乡县| 宁武县| 汉阴县| 麟游县| 大兴区| 泗水县| 余姚市| 张家川| 务川| 屯留县| 卢龙县| 焉耆| 安阳县| 淮南市| 百色市| 浙江省| 洪湖市| 崇明县| 思南县| 漳平市| 达孜县| 长兴县| 南丰县| 门头沟区| 海林市| 安阳县| 南江县| 辛集市| 治县。| 建水县| 夏河县| 屏东市| 松桃| 乐都县| 安乡县| 全椒县| 新平| 罗田县| 寻甸|