找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[復(fù)制鏈接]
樓主: 多愁善感
21#
發(fā)表于 2025-3-25 05:49:50 | 只看該作者
22#
發(fā)表于 2025-3-25 09:28:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:41:34 | 只看該作者
Flow-Based Geometric Interpolation of Fiber Orientation Distribution FunctionsHowever, the complicated mathematical structures of the FOD function pose challenges for FOD image processing tasks such as interpolation, which plays a critical role in the propagation of fiber tracts in tractography. In FOD-based tractography, linear interpolation is commonly used for numerical ef
24#
發(fā)表于 2025-3-25 19:32:28 | 只看該作者
Learnable Subdivision Graph Neural Network for?Functional Brain Network Analysis and?Interpretable Cnct brain states can confer heterogeneous functions to brain networks. Recent studies have revealed that extracting information from functional brain networks is beneficial for neuroscience analysis and brain disorder diagnosis. Graph neural networks (GNNs) have been demonstrated to be superior in l
25#
發(fā)表于 2025-3-25 19:58:34 | 只看該作者
26#
發(fā)表于 2025-3-26 00:52:47 | 只看該作者
27#
發(fā)表于 2025-3-26 06:04:42 | 只看該作者
Simulation of?Arbitrary Level Contrast Dose in?MRI Using an?Iterative Global Transformer Model Contrast Agents (GBCAs). These DL algorithms are however limited by the availability of high quality low dose datasets. Additionally, different types of GBCAs and pathologies require different dose levels for the DL algorithms to work reliably. In this work, we formulate a novel transformer (Gforme
28#
發(fā)表于 2025-3-26 08:46:14 | 只看該作者
Development and?Fast Transferring of?General Connectivity-Based Diagnosis Model to?New Brain Disordeire training new models with large data from new BDs, which is often not practical. Recent neuroscience studies suggested that BDs could share commonness from the perspective of functional connectivity derived from fMRI. This potentially enables developing a connectivity-based general model that can
29#
發(fā)表于 2025-3-26 16:42:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:32:00 | 只看該作者
Dynamic Structural Brain Network Construction by?Hierarchical Prototype Embedding GCN Using T1-MRI. Current methods with T1-MRI rely on predefined regions or isolated pretrained modules to localize atrophy regions, which neglects individual specificity. Besides, existing methods capture global structural context only on the whole-image-level, which weaken correlation between regions and the hier
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
眉山市| 滨州市| 醴陵市| 嘉黎县| 陈巴尔虎旗| 枣强县| 南昌市| 宁河县| 深圳市| 罗平县| 宁陕县| 满城县| 盘山县| 瑞安市| 漳浦县| 汤原县| 金平| 富顺县| 河源市| 岑巩县| 东源县| 永吉县| 罗甸县| 涿鹿县| 浠水县| 新安县| 北票市| 双牌县| 阜新市| 西华县| 新安县| 洛隆县| 高唐县| 类乌齐县| 上思县| 岳普湖县| 潮安县| 循化| 镇宁| 南召县| 米脂县|