找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[復制鏈接]
查看: 10390|回復: 57
樓主
發(fā)表于 2025-3-21 17:26:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023
副標題26th International C
編輯Hayit Greenspan,Anant Madabhushi,Russell Taylor
視頻videohttp://file.papertrans.cn/630/629224/629224.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay
描述.The ten-volume set LNCS 14220, 14221, 14222, 14223, 14224, 14225, 14226, 14227, 14228, and 14229 constitutes the refereed proceedings of the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, which was held in Vancouver, Canada, in October 2023. ..The 730 revised full papers presented were carefully reviewed and selected from a total of 2250 submissions. The papers are organized in the following topical sections:..Part I: Machine learning with limited supervision and machine learning – transfer learning;..Part II: Machine learning – learning strategies; machine learning – explainability, bias, and uncertainty; ..Part III: Machine learning – explainability, bias and uncertainty; image segmentation; ..Part IV: Image segmentation; ..Part V: Computer-aided diagnosis; ..Part VI: Computer-aided diagnosis; computational pathology; .Part VII: Clinical applications – abdomen; clinicalapplications – breast; clinical applications – cardiac; clinical applications – dermatology; clinical applications – fetal imaging; clinical applications – lung; clinical applications – musculoskeletal; clinical applications – oncology; clinical applicatio
出版日期Conference proceedings 2023
關鍵詞applied computing; life and medical sciences; computational biology; computer vision; computing methodol
版次1
doihttps://doi.org/10.1007/978-3-031-43987-2
isbn_softcover978-3-031-43986-5
isbn_ebook978-3-031-43987-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023影響因子(影響力)




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023影響因子(影響力)學科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023網絡公開度




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023網絡公開度學科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023被引頻次




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023被引頻次學科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023年度引用




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023年度引用學科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023讀者反饋




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:42:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:59:43 | 只看該作者
Towards Novel Class Discovery: A Study in?Novel Skin Lesions Clustering recognize samples from predefined categories, when they are deployed in the clinic, data from new unknown categories are constantly emerging. Therefore, it is crucial to automatically discover and identify new semantic categories from new data. In this paper, we propose a new novel class discovery
地板
發(fā)表于 2025-3-22 07:01:36 | 只看該作者
5#
發(fā)表于 2025-3-22 10:52:37 | 只看該作者
A Style Transfer-Based Augmentation Framework for?Improving Segmentation and?Classification Performassification performance of deep learning models for ultrasound image analysis. Previous studies have attempted to solve this problem by using style transfer and augmentation techniques, but these methods usually require a large amount of data from multiple sources and source-specific discriminators,
6#
發(fā)表于 2025-3-22 15:13:22 | 只看該作者
7#
發(fā)表于 2025-3-22 18:12:59 | 只看該作者
SegNetr: Rethinking the Local-Global Interactions and Skip Connections in U-Shaped Networks-shaped segmentation networks: 1) mostly focus on designing complex self-attention modules to compensate for the lack of long-term dependence based on convolution operation, which increases the overall number of parameters and computational complexity of the network; 2) simply fuse the features of e
8#
發(fā)表于 2025-3-22 21:44:03 | 只看該作者
9#
發(fā)表于 2025-3-23 05:18:47 | 只看該作者
Multi-modality Contrastive Learning for?Sarcopenia Screening from?Hip X-rays and?Clinical Informatiormal muscle strength. Accurate screening for sarcopenia is a key process of clinical diagnosis and therapy. In this work, we propose a novel multi-modality contrastive learning (MM-CL) based method that combines hip X-ray images and clinical parameters for sarcopenia screening. Our method captures t
10#
發(fā)表于 2025-3-23 05:43:50 | 只看該作者
DiffMIC: Dual-Guidance Diffusion Network for?Medical Image Classificationer vision community. However, while a substantial amount of diffusion-based research has focused on generative tasks, few studies have applied diffusion models to general medical image classification. In this paper, we propose the first diffusion-based model (named DiffMIC) to address general medica
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 03:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
佛教| 资源县| 塘沽区| 鹤山市| 姚安县| 天峨县| 汾西县| 河北区| 卢龙县| 松溪县| 丰镇市| 彭泽县| 扶余县| 绥化市| 治县。| 武宣县| 盱眙县| 武安市| 日喀则市| 沙雅县| 鄂尔多斯市| 隆子县| 安顺市| 哈巴河县| 凭祥市| 蒙阴县| 吴忠市| 芜湖县| 宝山区| 宽城| 上饶县| 昌黎县| 鄱阳县| 巧家县| 阜南县| 淳化县| 屏边| 桐柏县| 江北区| 佛冈县| 金阳县|