找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[復(fù)制鏈接]
樓主: Opiate
51#
發(fā)表于 2025-3-30 10:19:01 | 只看該作者
rom the thematic hook “organization and knowledge” to the various theoretical perspectives. The concept of knowledge has gained much popularity in the organizational discourse of recent years, both in the context of popular and practically oriented management and organizational doctrines as well as
52#
發(fā)表于 2025-3-30 14:58:09 | 只看該作者
Yiming Qian,Liangzhi Li,Huazhu Fu,Meng Wang,Qingsheng Peng,Yih Chung Tham,Chingyu Cheng,Yong Liu,Ricen und damit in der Verwendung von Macht kommt: Dabei gewinnt vor allem die Orientierung an Person und Gruppe massiv an Bedeutung. Auf eine Kurzformel gebracht bedeutet dies: Erfolgreiche Führung muss neben der Organisationsdynamik eine Expertise für die Gruppendynamik entwickeln. Allerdings stehen
53#
發(fā)表于 2025-3-30 19:31:49 | 只看該作者
54#
發(fā)表于 2025-3-31 00:28:59 | 只看該作者
SLPT: Selective Labeling Meets Prompt Tuning on?Label-Limited Lesion Segmentationbel-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from li
55#
發(fā)表于 2025-3-31 02:22:11 | 只看該作者
COLosSAL: A Benchmark for?Cold-Start Active Learning for?3D Medical Image Segmentationmance when trained on a fully-annotated dataset. However, data annotation is often a significant bottleneck, especially for 3D medical images. Active learning (AL) is a promising solution for efficient annotation but requires an initial set of labeled samples to start active selection. When the enti
56#
發(fā)表于 2025-3-31 07:01:56 | 只看該作者
57#
發(fā)表于 2025-3-31 11:41:36 | 只看該作者
58#
發(fā)表于 2025-3-31 16:30:40 | 只看該作者
PLD-AL: Pseudo-label Divergence-Based Active Learning in?Carotid Intima-Media Segmentation for?Ultraod that measures its thickness and roughness during routine ultrasound scans. Although advanced deep learning technology has shown promise in enabling automatic and accurate medical image segmentation, the lack of a large quantity of high-quality CIM labels may hinder the model training process. Act
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜黄县| 启东市| 繁峙县| 万载县| 城固县| 襄垣县| 日喀则市| 沅江市| 黄梅县| 永济市| 宜昌市| 永兴县| 广安市| 勃利县| 习水县| 台东市| 连南| 阿尔山市| 民丰县| 禹州市| 泸溪县| 灵川县| 黎平县| 区。| 镇赉县| 鹿邑县| 抚远县| 顺平县| 永康市| 沅江市| 霍山县| 博爱县| 玉山县| 崇阳县| 土默特右旗| 凤城市| 射阳县| 抚远县| 澜沧| 丹凤县| 岳阳市|