找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay

[復(fù)制鏈接]
樓主: Opiate
21#
發(fā)表于 2025-3-25 03:35:29 | 只看該作者
OpenAL: An Efficient Deep Active Learning Framework for?Open-Set Pathology Image Classificationification of pathology images show that OpenAL can significantly improve the query quality of target class samples and achieve higher performance than current state-of-the-art AL methods. Code is available at ..
22#
發(fā)表于 2025-3-25 10:07:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:44:36 | 只看該作者
COLosSAL: A Benchmark for?Cold-Start Active Learning for?3D Medical Image Segmentationark named COLosSAL by evaluating six cold-start AL strategies on five 3D medical image segmentation tasks from the public Medical Segmentation Decathlon collection. We perform a thorough performance analysis and explore important open questions for cold-start AL, such as the impact of budget on diff
24#
發(fā)表于 2025-3-25 18:57:57 | 只看該作者
Continual Learning for?Abdominal Multi-organ and?Tumor Segmentationto accommodate newly emerging classes. These heads enable independent predictions for newly introduced and previously learned classes, effectively minimizing the impact of new classes on old ones during the course of continual learning. We further propose incorporating Contrastive Language-Image Pre
25#
發(fā)表于 2025-3-25 23:51:58 | 只看該作者
Incremental Learning for?Heterogeneous Structure Segmentation in?Brain Tumor MRIcal categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entro
26#
發(fā)表于 2025-3-26 00:28:14 | 只看該作者
27#
發(fā)表于 2025-3-26 07:01:25 | 只看該作者
Adapter Learning in?Pretrained Feature Extractor for?Continual Learning of?Diseasesegory, task-specific adapter(s) can help the pretrained feature extractor more effectively extract discriminative features between diseases. In addition, a simple yet effective fine-tuning is applied to collaboratively fine-tune multiple task-specific heads such that outputs from different heads are
28#
發(fā)表于 2025-3-26 11:49:19 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:44 | 只看該作者
VISA-FSS: A Volume-Informed Self Supervised Approach for?Few-Shot 3D Segmentatione performance of 3D medical segmentation. To achieve this goal, we introduce a volume-aware task generation method that utilizes consecutive slices within a 3D image to construct more varied and realistic self-supervised FSS tasks during training. In addition, to provide pseudo-labels for consecutiv
30#
發(fā)表于 2025-3-26 19:04:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑山县| 丰台区| 灵川县| 晋城| 廉江市| 临猗县| 太和县| 增城市| 黄大仙区| 西充县| 东源县| 衡南县| 宁都县| 安龙县| 泰州市| 泾源县| 涟源市| 保靖县| 邹城市| 龙海市| 扬州市| 岱山县| 淮北市| 江源县| 慈溪市| 和林格尔县| 金昌市| 高州市| 临沂市| 武清区| 开封县| 安达市| 甘孜| 永和县| 安吉县| 潞城市| 新干县| 白河县| 卓资县| 平乐县| 新疆|