找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022; 25th International C Linwei Wang,Qi Dou,Shuo Li Conference procee

[復制鏈接]
樓主: 爆裂
21#
發(fā)表于 2025-3-25 04:33:22 | 只看該作者
Implicit Neural Representations for Generative Modeling of?Living Cell Shapes images. Deep generative models for cell shape synthesis require a?light-weight and flexible representation of the cell shape. However, commonly used voxel-based representations are unsuitable for high-resolution shape synthesis, and polygon meshes have limitations when modeling topology changes suc
22#
發(fā)表于 2025-3-25 07:54:47 | 只看該作者
23#
發(fā)表于 2025-3-25 14:32:03 | 只看該作者
NerveFormer: A Cross-Sample Aggregation Network for?Corneal Nerve Segmentatione-related diseases and systematic diseases. Existing works mainly use convolutional neural networks to improve the segmentation accuracy, while further improvement is needed to mitigate the nerve discontinuity and noise interference. In this paper, we propose a novel corneal nerve segmentation netwo
24#
發(fā)表于 2025-3-25 19:08:20 | 只看該作者
Domain Adaptive Mitochondria Segmentation via?Enforcing Inter-Section Consistencye and time-consuming to collect. Recently, Unsupervised Domain Adaptation (UDA) has been proposed to avoid annotating on target EM volumes by exploiting annotated source EM volumes. However, existing UDA methods for mitochondria segmentation only address the intra-section gap between source and targ
25#
發(fā)表于 2025-3-25 23:48:31 | 只看該作者
DeStripe: A Self2Self Spatio-Spectral Graph Neural Network with?Unfolded Hessian for?Stripe Artifactles with decoupled illumination and detection paths. Although the selective excitation scheme of such a microscope provides intrinsic optical sectioning that minimizes out-of-focus fluorescence background and sample photodamage, it is prone to light absorption and scattering effects, which results i
26#
發(fā)表于 2025-3-26 01:13:00 | 只看該作者
End-to-End Cell Recognition by?Point Annotationpervised methods usually estimate probability density maps for cell recognition. However, in dense cell scenarios, their performance can be limited by pre- and post-processing as it is impossible to find a universal parameter setting. In this paper, we introduce an end-to-end framework that applies
27#
發(fā)表于 2025-3-26 06:28:00 | 只看該作者
28#
發(fā)表于 2025-3-26 09:39:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:49:21 | 只看該作者
DeepMIF: Deep Learning Based Cell Profiling for?Multispectral Immunofluorescence Images with?Graphicwever, complex makeup of markers in the images hinders the accurate quantification of cell phenotypes. We developed DeepMIF, a new deep learning (DL) based tool with a graphical user interface (GUI) to detect and quantify cell phenotypes on M-IF images, and visualize whole slide image (WSI) and cell
30#
發(fā)表于 2025-3-26 20:30:05 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 23:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永州市| 泾源县| 团风县| 名山县| 翼城县| 耒阳市| 江源县| 宽甸| 襄樊市| 遵化市| 南川市| 双鸭山市| 汉沽区| 许昌县| 土默特右旗| 富蕴县| 宁波市| 乐昌市| 千阳县| 曲阳县| 无锡市| 临桂县| 赤城县| 孝昌县| 汝南县| 韶关市| 得荣县| 伊吾县| 萨迦县| 旅游| 西平县| 仁化县| 庄浪县| 昭通市| 南投县| 基隆市| 页游| 镇安县| 天镇县| 阿拉善左旗| 仪征市|