找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020; 23rd International C Anne L. Martel,Purang Abolmaesumi,Leo Joskow

[復(fù)制鏈接]
樓主: 重婚
11#
發(fā)表于 2025-3-23 12:21:30 | 只看該作者
12#
發(fā)表于 2025-3-23 15:09:24 | 只看該作者
13#
發(fā)表于 2025-3-23 20:26:30 | 只看該作者
Learning MRI ,-Space Subsampling Pattern Using Progressive Weight Pruningiteration of learning, we first greedily eliminate a few phases that are considered less important in the .-space according to their assigned weights, and then fine-tune the reconstruction model. In our pilot study, experiments demonstrated the robustness and superiority of our proposed method in both single- and multi-modal MRI settings.
14#
發(fā)表于 2025-3-23 22:59:56 | 只看該作者
0302-9743 Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic..The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-bl
15#
發(fā)表于 2025-3-24 02:53:52 | 只看該作者
Improving Amide Proton Transfer-Weighted MRI Reconstruction Using T2-Weighted Images Recurrent Feature Sharing Reconstruction network (RFS-Rec) is designed to utilize intermediate features extracted from the matched T.w image by a Convolutional Recurrent Neural Network (CRNN), so that the missing structural information can be incorporated into the undersampled APT raw image thus ef
16#
發(fā)表于 2025-3-24 09:00:47 | 只看該作者
Joint Reconstruction and Bias Field Correction for Undersampled MR Imagingimization scheme. We use the HCP dataset as well as in-house measured images for the evaluations. We show that the proposed method improves the reconstruction quality, both visually and in terms of RMSE.
17#
發(fā)表于 2025-3-24 11:52:53 | 只看該作者
18#
發(fā)表于 2025-3-24 16:51:33 | 只看該作者
3d-SMRnet: Achieving a New Quality of?MPI?System?Matrix?Recovery by?Deep?Learningrk with a 3d system matrix recovery network and show that it recovers a 3d system matrix with a subsampling factor of 64 in less than a minute and outperforms CS in terms of system matrix quality, reconstructed image quality, and processing time. The advantage of our method is demonstrated by recons
19#
發(fā)表于 2025-3-24 21:44:44 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:24 | 只看該作者
T2 Mapping from Super-Resolution-Reconstructed Clinical Fast Spin Echo Magnetic Resonance Acquisitiosing super-resolution reconstruction from conventional T2-weighted fast spin echo sequences for 3D isotropic T2 mapping. A quantitative magnetic resonance phantom was imaged using a clinical T2-weighted fast spin echo sequence at variable echo time to allow for super-resolution reconstruction at eve
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塔河县| 安吉县| 交口县| 遂昌县| 沙雅县| 绥滨县| 淮南市| 枣庄市| 奇台县| 恩平市| 绥滨县| 信阳市| 金沙县| 岳普湖县| 蒙阴县| 大关县| 含山县| 腾冲县| 文昌市| 龙南县| 嘉善县| 海兴县| 河源市| 汝州市| 墨竹工卡县| 阿鲁科尔沁旗| 平谷区| 黑龙江省| 宣恩县| 淳安县| 民县| 宕昌县| 天台县| 合水县| 平陆县| 五台县| 奇台县| 普格县| 台南市| 平湖市| 石屏县|