找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020; 23rd International C Anne L. Martel,Purang Abolmaesumi,Leo Joskow

[復制鏈接]
樓主: Motion
51#
發(fā)表于 2025-3-30 08:47:56 | 只看該作者
52#
發(fā)表于 2025-3-30 12:37:19 | 只看該作者
53#
發(fā)表于 2025-3-30 17:07:59 | 只看該作者
Ear Cartilage Inference for Reconstructive Surgery with Convolutional Mesh Autoencodershat requires the surgeon to carve a “scaffold” for a new ear, typically from the patient’s own rib cartilage. This is an unnecessarily invasive procedure, and reconstruction relies on the skill of the surgeon to accurately construct a scaffold that best suits the patient based on limited data. Work
54#
發(fā)表于 2025-3-30 21:15:52 | 只看該作者
Robust Multi-modal 3D Patient Body Modelinglinical workflow, automated parameter optimization for medical devices .With the popularity of 3D optical sensors and the rise of deep learning, this problem has seen much recent development. However, existing art is mostly constrained by requiring specific types of sensors as well as limited data a
55#
發(fā)表于 2025-3-31 03:18:40 | 只看該作者
A New Electromagnetic-Video Endoscope Tracking Method via Anatomical Constraints and Historically Ob observed differential evolution for surgical navigation. Current endoscope tracking approaches still get trapped in image artifacts, tissue deformation, and inaccurate sensor outputs during endoscopic navigation. To deal with these limitations, we spatially constraint inaccurate electromagnetic sen
56#
發(fā)表于 2025-3-31 07:06:34 | 只看該作者
Malocclusion Treatment Planning via PointNet Based Spatial Transformation Networkes on two key aspects: the treatment planning for dentition alignment; and the plan implementation with the aid of external forces. Existing treatment planning requires significant time and effort for orthodontists and technicians. At present, no work successfully automates the process of tooth move
57#
發(fā)表于 2025-3-31 09:14:17 | 只看該作者
58#
發(fā)表于 2025-3-31 15:34:18 | 只看該作者
59#
發(fā)表于 2025-3-31 19:06:24 | 只看該作者
Reinforcement Learning of Musculoskeletal Control from Functional Simulationsscle activations for movements often being highly redundant, nonlinear, and time dependent, machine learning can provide a solution for their modeling and control for anatomy-specific musculoskeletal simulations. Sophisticated biomechanical simulations often require specialized computational environ
60#
發(fā)表于 2025-3-31 22:27:46 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宝兴县| 巨野县| 新绛县| 项城市| 五大连池市| 祁门县| 江川县| 白城市| 遵义县| 柏乡县| 乌拉特后旗| 孟州市| 桃源县| 衢州市| 怀远县| 响水县| 甘南县| 吴江市| 安丘市| 开平市| 宜川县| 九龙坡区| 彭水| 清水河县| 新和县| 博白县| 珲春市| 新密市| 桓仁| 聊城市| 盐亭县| 尚志市| 莱芜市| 兰州市| 德惠市| 龙州县| 大邑县| 临漳县| 毕节市| 余江县| 同德县|