找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020; 23rd International C Anne L. Martel,Purang Abolmaesumi,Leo Joskow

[復(fù)制鏈接]
樓主: FROM
11#
發(fā)表于 2025-3-23 13:00:22 | 只看該作者
Domain-Invariant Prior Knowledge Guided Attention Networks for Robust Skull Stripping of Developing edge, which are important guidance information for accurate brain extraction of developing macaques from 0 to 36 months of age. Specifically, we introduce signed distance map (SDM) and center of gravity distance map (CGDM) based on the intermediate segmentation results and fuse their information by
12#
發(fā)表于 2025-3-23 15:07:48 | 只看該作者
13#
發(fā)表于 2025-3-23 21:04:20 | 只看該作者
Recovering Brain Structural Connectivity from Functional Connectivity via Multi-GCN Based Generative-layer graph convolution networks (GCNs) which have the capability to model complex indirect connections in brain connectivity. The discriminator of MGCN-GAN is a single multi-layer GCN which aims to distinguish predicted SC from real SC. To overcome the inherent unstable behavior of GAN, we designe
14#
發(fā)表于 2025-3-24 00:52:22 | 只看該作者
Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprintingiminative capability among infant individuals. Then, a disentanglement strategy is proposed to separate the latent variables into identity-code, age-code, and noise-code, which not only restrains the interference from age-related developmental variance, but also captures the identity-related invaria
15#
發(fā)表于 2025-3-24 04:56:04 | 只看該作者
16#
發(fā)表于 2025-3-24 09:11:44 | 只看該作者
Species-Shared and -Specific Structural Connections Revealed by Dirty Multi-task Regressionession method is developed in the attempt to automatically identified the species-shared and -specific connections. The concordance of the findings . our method and previous reports demonstrate the effectiveness and the promise of this framework.
17#
發(fā)表于 2025-3-24 14:19:16 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:55 | 只看該作者
Unified Brain Network with Functional and Structural Dataifold with structural data into this model. The constructed network then captures the global brain region correlation by the low-rank constraint and preserves the local structural information by manifold learning. Second, we adaptively estimate the importance of different brain regions by PageRank a
19#
發(fā)表于 2025-3-24 19:17:07 | 只看該作者
Integrating Similarity Awareness and Adaptive Calibration in Graph Convolution Network to Predict Diural scores. Current edge weights are used to construct an initial graph and .-. the GCN. Based on the pre-trained GCN, the differences between scores replace the traditional correlation distances to evaluate edge weights. Lastly, we devise a . technique to . functional and structural information fo
20#
發(fā)表于 2025-3-25 00:33:02 | 只看該作者
Infant Cognitive Scores Prediction with Multi-stream Attention-Based Temporal Path Signature Featurering different influences of each brain region on the cognitive function, we design a learning-based attention mask generator to automatically weight regions correspondingly. Experiments are conducted on an in-house longitudinal dataset. By comparing with several recent algorithms, the proposed meth
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴市| 红安县| 开封县| 宜丰县| 买车| 普定县| 洪雅县| 睢宁县| 彰化县| 静乐县| 南郑县| 柳河县| 陆川县| 胶州市| 合川市| 台前县| 来安县| 图片| 嘉祥县| 舞钢市| 莫力| 米易县| 滕州市| 榕江县| 台东县| 乃东县| 兴仁县| 施秉县| 修文县| 信宜市| 明溪县| 曲周县| 榆林市| 阿巴嘎旗| 岳西县| 乃东县| 宁晋县| 城口县| 本溪市| 什邡市| 阿克|