找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018; 21st International C Alejandro F. Frangi,Julia A. Schnabel,Gabor

[復(fù)制鏈接]
樓主: firearm
51#
發(fā)表于 2025-3-30 08:21:38 | 只看該作者
Can Deep Learning Relax Endomicroscopy Hardware Miniaturization Requirements?e been made to develop miniaturized . imaging devices, specifically confocal laser microscopes, for both clinical and research applications. However, current implementations of miniature CLE components such as confocal lenses compromise image resolution, signal-to-noise ratio, or both, which negativ
52#
發(fā)表于 2025-3-30 14:01:16 | 只看該作者
53#
發(fā)表于 2025-3-30 20:19:52 | 只看該作者
54#
發(fā)表于 2025-3-31 00:37:19 | 只看該作者
A No-Reference Quality Metric for Retinal Vessel Tree Segmentationios, the ability to automatically assess the quality of predictions when no expert annotation is available can be critical. In this paper, we propose a new method for quality assessment of retinal vessel tree segmentations in the absence of a reference ground-truth. For this, we artificially degrade
55#
發(fā)表于 2025-3-31 00:55:39 | 只看該作者
56#
發(fā)表于 2025-3-31 06:37:58 | 只看該作者
A Deep Learning Based Anti-aliasing Self Super-Resolution Algorithm for MRIio requires a long time, making them costly and susceptible to motion artifacts. A common way to partly achieve this goal is to acquire MR images with good in-plane resolution and poor through-plane resolution?(i.e., large slice thickness). For such 2D imaging protocols, aliasing is also introduced
57#
發(fā)表于 2025-3-31 10:54:32 | 只看該作者
58#
發(fā)表于 2025-3-31 14:28:16 | 只看該作者
Deeper Image Quality Transfer: Training Low-Memory Neural Networks for 3D Imagesarning. We exploit memory-efficient backpropagation techniques, to reduce the memory complexity of network training from being linear in the network’s depth, to being roughly constant – permitting us to elongate deep architectures with negligible memory increase. We evaluate our methodology in the p
59#
發(fā)表于 2025-3-31 18:04:04 | 只看該作者
60#
發(fā)表于 2025-4-1 00:12:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 02:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇州市| 景洪市| 芦山县| 邓州市| 江阴市| 开封市| 松阳县| 平潭县| 江城| 台北市| 丹凤县| 江北区| 乌拉特中旗| 疏勒县| 宁明县| 义乌市| 弥渡县| 饶河县| 临夏县| 九江市| 呈贡县| 张家口市| 香河县| 博客| 察雅县| 崇明县| 泾川县| 读书| 博野县| 随州市| 华蓥市| 东乌| 正镶白旗| 兴安县| 德清县| 连南| 洛南县| 吉首市| 阿拉尔市| 侯马市| 新田县|