找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging; MICCAI 2016 Internat Henning Müller,B. Michael Kelm,Annem

[復(fù)制鏈接]
樓主: Debilitate
41#
發(fā)表于 2025-3-28 15:40:51 | 只看該作者
LATEST: ,ocal ,dap,iv, and ,equential ,raining for Tissue Segmentation of Isointense Infant Brain MRw tissue contrast caused by ongoing myelination processes. In this work, we propose a novel learning method based on Local AdapTivE and Sequential Training (LATEST) for segmentation. Specifically, random forest technique is employed to train a . (a single decision tree) for each voxel in the common
42#
發(fā)表于 2025-3-28 19:38:02 | 只看該作者
Landmark-Based Alzheimer’s Disease Diagnosis Using Longitudinal Structural MR Imagesnear registration or tissue segmentation in the application stage and is robust to the inconsistency among longitudinal scans. Specifically, (1) the discriminative landmarks are first automatically discovered from the whole brain, which can be efficiently localized using a fast landmark detection me
43#
發(fā)表于 2025-3-29 01:48:47 | 只看該作者
Inferring Disease Status by Non-parametric Probabilistic Embedding However, robust and efficient computation of pairwise similarity is a challenging task for large-scale medical image datasets. We specifically target diseases where multiple subtypes of pathology present simultaneously, rendering the definition of the similarity a difficult task. To define pairwise
44#
發(fā)表于 2025-3-29 05:09:42 | 只看該作者
45#
發(fā)表于 2025-3-29 07:58:30 | 只看該作者
Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Studycan help with the diagnosis of chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of emphysema subtypes has been successfully implemented via supervised learning of these three emphysema subtypes. In this work, we demonstrate that unsupervised learning on a large he
46#
發(fā)表于 2025-3-29 14:53:03 | 只看該作者
47#
發(fā)表于 2025-3-29 16:31:28 | 只看該作者
48#
發(fā)表于 2025-3-29 22:40:50 | 只看該作者
Automatic Detection of Histological Artifacts in Mouse Brain Slice Imageshistological artifacts, like tissue tears and losses. These artifacts are often produced from manual sample preparation processes, which are ubiquitous in most neuroanatomical laboratories. We present a novel geometric algorithm to automatically detect these artifacts (damage regions) in mouse brain
49#
發(fā)表于 2025-3-30 01:32:51 | 只看該作者
50#
發(fā)表于 2025-3-30 05:40:37 | 只看該作者
Representation Learning for Cross-Modality Classificationion learning approaches, based on autoencoders, that address this problem by learning representations that are similar across domains. Both approaches use, next to the data representation objective, a similarity objective to minimise the difference between representations of corresponding patches fr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平潭县| 宁城县| 珲春市| 黄平县| 盖州市| 长垣县| 南投市| 池州市| 黄石市| 雅安市| 嵊州市| 师宗县| 平昌县| 永昌县| 德江县| 增城市| 苗栗县| 阿荣旗| 松滋市| 资源县| 巧家县| 临朐县| 秦安县| 维西| 钟山县| 慈溪市| 方城县| 霍邱县| 枝江市| 东乌| 东安县| 明溪县| 西平县| 博湖县| 巴马| 陵水| 综艺| 囊谦县| 财经| 枣庄市| 西平县|