找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mechanical Theorem Proving in Geometries; Basic Principles Wen-tsün Wu Book 1994 Springer-Verlag Wien 1994 Area.Multiplication.algebraic va

[復(fù)制鏈接]
樓主: 極大
31#
發(fā)表于 2025-3-26 21:35:37 | 只看該作者
32#
發(fā)表于 2025-3-27 01:21:10 | 只看該作者
33#
發(fā)表于 2025-3-27 08:42:06 | 只看該作者
0943-853X abolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made g978-3-211-82506-8978-3-7091-6639-0Series ISSN 0943-853X Series E-ISSN 2197-8409
34#
發(fā)表于 2025-3-27 13:16:24 | 只看該作者
Wen-tsün Wu offers a valuable resource for anyone seeking a deeper understanding of quantum mechanics and its fundamental role in shaping our understanding of the physical world..978-3-031-48779-8978-3-031-48777-4
35#
發(fā)表于 2025-3-27 16:50:27 | 只看該作者
,Author’s note to the English-language edition,Kapur 1986). In this note we shall give a brief review of the achievements of MTP in recent years restricted, however, to the methods as exhibited in the present book alone. Thus it may serve merely as complement and addendum to the original version of the book.
36#
發(fā)表于 2025-3-27 21:04:28 | 只看該作者
Orthogonal geometry, metric geometry and ordinary geometry, Pascal’s theorem in usual projective geometry where the conic section degenerates into two lines. To distinguish the axiom considered by Hilbert from the general Pappus’ and Pascal’s theorems, we call it the . Pascalian axiom, stated as follows.
37#
發(fā)表于 2025-3-28 00:28:43 | 只看該作者
38#
發(fā)表于 2025-3-28 03:52:52 | 只看該作者
Mechanization theorems of (ordinary) ordered geometries,uch an order relation, then the situation becomes not only much more complicated but also different in essence. In this case, there are methods for mechanical proving in theory, but their efficiency is not high. It still seems difficult to prove non-trivial theorems by using these methods.
39#
發(fā)表于 2025-3-28 09:19:12 | 只看該作者
40#
發(fā)表于 2025-3-28 11:30:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 09:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济阳县| 朝阳县| 西青区| 浦县| 华坪县| 日喀则市| 刚察县| 东海县| 正镶白旗| 阿鲁科尔沁旗| 晴隆县| 铅山县| 怀仁县| 张家港市| 衡阳市| 阜阳市| 本溪市| 沾化县| 南开区| 托里县| 得荣县| 射阳县| 巴楚县| 宣城市| 贵溪市| 舟曲县| 华安县| 满洲里市| 洞口县| 台湾省| 凉山| 彭泽县| 黄骅市| 荥经县| 德钦县| 罗源县| 仁化县| 大新县| 内江市| 兴义市| 太仆寺旗|