找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mechanical Theorem Proving in Geometries; Basic Principles Wen-tsün Wu Book 1994 Springer-Verlag Wien 1994 Area.Multiplication.algebraic va

[復制鏈接]
樓主: 極大
31#
發(fā)表于 2025-3-26 21:35:37 | 只看該作者
32#
發(fā)表于 2025-3-27 01:21:10 | 只看該作者
33#
發(fā)表于 2025-3-27 08:42:06 | 只看該作者
0943-853X abolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made g978-3-211-82506-8978-3-7091-6639-0Series ISSN 0943-853X Series E-ISSN 2197-8409
34#
發(fā)表于 2025-3-27 13:16:24 | 只看該作者
Wen-tsün Wu offers a valuable resource for anyone seeking a deeper understanding of quantum mechanics and its fundamental role in shaping our understanding of the physical world..978-3-031-48779-8978-3-031-48777-4
35#
發(fā)表于 2025-3-27 16:50:27 | 只看該作者
,Author’s note to the English-language edition,Kapur 1986). In this note we shall give a brief review of the achievements of MTP in recent years restricted, however, to the methods as exhibited in the present book alone. Thus it may serve merely as complement and addendum to the original version of the book.
36#
發(fā)表于 2025-3-27 21:04:28 | 只看該作者
Orthogonal geometry, metric geometry and ordinary geometry, Pascal’s theorem in usual projective geometry where the conic section degenerates into two lines. To distinguish the axiom considered by Hilbert from the general Pappus’ and Pascal’s theorems, we call it the . Pascalian axiom, stated as follows.
37#
發(fā)表于 2025-3-28 00:28:43 | 只看該作者
38#
發(fā)表于 2025-3-28 03:52:52 | 只看該作者
Mechanization theorems of (ordinary) ordered geometries,uch an order relation, then the situation becomes not only much more complicated but also different in essence. In this case, there are methods for mechanical proving in theory, but their efficiency is not high. It still seems difficult to prove non-trivial theorems by using these methods.
39#
發(fā)表于 2025-3-28 09:19:12 | 只看該作者
40#
發(fā)表于 2025-3-28 11:30:27 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 22:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平顺县| 宁武县| 孝感市| 调兵山市| 临沭县| 竹山县| 陈巴尔虎旗| 通江县| 黄陵县| 应城市| 图们市| 南京市| 图们市| 葵青区| 开江县| 昔阳县| 邛崃市| 秦皇岛市| 贵南县| 民丰县| 宁明县| 萨迦县| 闻喜县| 金溪县| 平南县| 伊吾县| 固始县| 蒙自县| 甘德县| 隆德县| 德令哈市| 定日县| 女性| 永安市| 十堰市| 永昌县| 克山县| 疏勒县| 内江市| 沙雅县| 布拖县|