找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Measuring the Data Universe; Data Integration Usi Reinhold Stahl,Patricia Staab Book 2018 Springer International Publishing AG, part of Spr

[復(fù)制鏈接]
查看: 7291|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:34:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Measuring the Data Universe
副標(biāo)題Data Integration Usi
編輯Reinhold Stahl,Patricia Staab
視頻videohttp://file.papertrans.cn/629/628245/628245.mp4
概述Provides an introduction to organizing and integrating data.Introduces the international statistics standard Statistical Data and Metadata Exchange (SDMX) and explains how it could be used in data int
圖書(shū)封面Titlebook: Measuring the Data Universe; Data Integration Usi Reinhold Stahl,Patricia Staab Book 2018 Springer International Publishing AG, part of Spr
描述.This richly illustrated book provides an easy-to-read introduction to the challenges of organizing and integrating modern data worlds, explaining the contribution of public statistics and the ISO standard SDMX (Statistical Data and Metadata Exchange). As such, it is a must for data experts as well those aspiring to become one..Today, exponentially growing data worlds are increasingly determining our professional and private lives. The rapid increase in the amount of globally available data, fueled by search engines and social networks but also by new technical possibilities such as Big Data, offers great opportunities. But whatever the undertaking – driving the block chain revolution or making smart phones even smarter – success will be determined by how well it is possible to integrate, i.e. to collect, link and evaluate, the required data. One crucial factor in this is the introduction of a cross-domain order system in combination with a standardization of the data structure.. .Using everyday examples, the authors show how the concepts of statistics provide the basis for the universal and standardized presentation of any kind of information. They also introduce the international
出版日期Book 2018
關(guān)鍵詞data integration; SDMX; standardization; big data; statistics; data analysis; data modeling; business intel
版次1
doihttps://doi.org/10.1007/978-3-319-76989-9
isbn_softcover978-3-030-08342-7
isbn_ebook978-3-319-76989-9
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書(shū)目名稱Measuring the Data Universe影響因子(影響力)




書(shū)目名稱Measuring the Data Universe影響因子(影響力)學(xué)科排名




書(shū)目名稱Measuring the Data Universe網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Measuring the Data Universe網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Measuring the Data Universe被引頻次




書(shū)目名稱Measuring the Data Universe被引頻次學(xué)科排名




書(shū)目名稱Measuring the Data Universe年度引用




書(shū)目名稱Measuring the Data Universe年度引用學(xué)科排名




書(shū)目名稱Measuring the Data Universe讀者反饋




書(shū)目名稱Measuring the Data Universe讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:17:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:15:49 | 只看該作者
978-3-030-08342-7Springer International Publishing AG, part of Springer Nature 2018
地板
發(fā)表于 2025-3-22 07:42:33 | 只看該作者
5#
發(fā)表于 2025-3-22 09:58:31 | 只看該作者
Where We Stand, Where We Want to Be, and How to Get Theree collection of more and more granular data..Companies are increasingly aware that they are sitting on an underestimated treasure of data. But most of it is stored in separate .. Therefore, many organisations are making major efforts to . data, to link the treasures hidden in the silos and to create
6#
發(fā)表于 2025-3-22 15:55:20 | 只看該作者
What Does Reality Look Like? gaps still exist..When data sets do not fit together, the potential within them cannot be exploited. Nevertheless, the information industry has neither a system of order nor any comprehensive standard for data. This deficiency explains why firms launch countless data warehousing, business intellige
7#
發(fā)表于 2025-3-22 21:02:14 | 只看該作者
What Can We Expect From Big Data? parallelisation and networking, immensely greater computing power is possible. This drives the idea of simply throwing all the data into a . and magically recovering new insights from it..However, this brute approach soon reaches its limits—set not only by ethics but also by feasibility. For all it
8#
發(fā)表于 2025-3-22 23:31:37 | 只看該作者
Why Is Data Integration So Hard?, is established to enable automated handling of the data. A common understanding will then be achieved through semantic harmonisation..Data integration allows linking and subsequent processing of data from different sources. Essential for this is this three-step standardisation, which unfortunately
9#
發(fā)表于 2025-3-23 01:54:00 | 只看該作者
Basic Thoughts About Standardisatione initial investments have been made. Often they are not even the “best solution” to the single individual problem. However, the strength of a standard does not come from its genius but from the fact that it is taken up by all. Once a standard has been established or even endorsed by official author
10#
發(fā)表于 2025-3-23 06:35:59 | 只看該作者
Standardisation and Researchtandardisation but in a narrow subject area for which they need well-prepared datasets..Technical tools can provide a high degree of automation both for data integration and for reporting. However, there is a gap between what researchers want from a dataset and what even well-ordered data structures
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆子县| 清徐县| 浦江县| 东平县| 郸城县| 沧州市| 策勒县| 华蓥市| 宝应县| 县级市| 五莲县| 长兴县| 怀化市| 美姑县| 岳池县| 余江县| 郎溪县| 桦南县| 吴桥县| 揭西县| 郴州市| 英德市| 西和县| 汶上县| 进贤县| 唐山市| 谷城县| 黄浦区| 太康县| 辛集市| 乌兰浩特市| 介休市| 通化县| 饶阳县| 江山市| 临高县| 永济市| 承德县| 赤峰市| 海林市| 新野县|