找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Measuring Uncertainty within the Theory of Evidence; Simona Salicone,Marco Prioli Book 2018 Springer International Publishing AG, part of

[復(fù)制鏈接]
樓主: ACE313
41#
發(fā)表于 2025-3-28 18:10:34 | 只看該作者
2198-7807 lternative approach using examples of uncertainty propagatioThis monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applicatio
42#
發(fā)表于 2025-3-28 21:38:35 | 只看該作者
43#
發(fā)表于 2025-3-29 01:21:50 | 只看該作者
A First, Preliminary Example the potentiality, versatility, and generality of the RFV approach. In this way, we hope to intrigue the readers and convince them it is worthwhile studying this new approach and going on reading this book.
44#
發(fā)表于 2025-3-29 06:12:38 | 只看該作者
45#
發(fā)表于 2025-3-29 10:39:43 | 只看該作者
The Joint Possibility Distributions. In this case, the bivariate distribution of (., .?) (i.e., their joint distribution) shall be considered to represent the information about the possible . values independently of the .?values, the possible .?values independently of the . values, and the possible .?values given the . values (i.e., .?and . relationship).
46#
發(fā)表于 2025-3-29 14:56:31 | 只看該作者
A Short Review of the Fuzzy Set Theoryan element can either belong to a set or not, and nothing in between. A model represents exactly the real system that has been modeled, that is, it is unequivocal, it contains no ambiguities, and its parameters are exactly known, with no doubts about their values or their occurrence.
47#
發(fā)表于 2025-3-29 17:51:34 | 只看該作者
48#
發(fā)表于 2025-3-29 19:46:35 | 只看該作者
49#
發(fā)表于 2025-3-30 02:40:18 | 只看該作者
50#
發(fā)表于 2025-3-30 04:48:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江油市| 神木县| 通江县| 博客| 公主岭市| 甘德县| 鱼台县| 同仁县| 东乡族自治县| 萍乡市| 临武县| 邛崃市| 宜章县| 专栏| 重庆市| 上蔡县| 淮北市| 江都市| 台南县| 湘阴县| 宝山区| 吴旗县| 芜湖市| 绵阳市| 凤山市| 来安县| 盐边县| 郓城县| 始兴县| 连城县| 改则县| 清新县| 仁布县| 玉田县| 杨浦区| 祥云县| 同心县| 定南县| 佛冈县| 邵武市| 绥滨县|