找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Measurement Uncertainty in Chemical Analysis; Paul Bièvre,Helmut Günzler Book 2003 Springer-Verlag Berlin Heidelberg 2003 Accreditation.Ac

[復制鏈接]
樓主: CLOG
31#
發(fā)表于 2025-3-26 22:07:29 | 只看該作者
Should non-significant bias be included in the uncertainty budget?,edure is unbiased and, consequently, the results obtained with this procedure are not corrected for this bias. However, when assessing trueness there is always a probability of incorrectly concluding that the experimental bias is not significant. Therefore, non-significant experimental bias should b
32#
發(fā)表于 2025-3-27 02:04:32 | 只看該作者
33#
發(fā)表于 2025-3-27 06:18:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:52:18 | 只看該作者
35#
發(fā)表于 2025-3-27 17:32:50 | 只看該作者
,Uncertainty — statistical approach, 1/f noise and chaos,ults and analytical measurements at high data dispersion are considered. They include a symmetry of the concentration scale, low-frequency noise, and nonlinear phenomena in atomization processes and chemical reactions. The relationship of 1/f noise and nonlinear phenomena to uncertainty balance, exp
36#
發(fā)表于 2025-3-27 19:27:04 | 只看該作者
Calibration uncertainty,rtainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias.
37#
發(fā)表于 2025-3-27 22:25:50 | 只看該作者
38#
發(fā)表于 2025-3-28 03:29:58 | 只看該作者
The use of uncertainty estimates of test results in comparisons with acceptance limits, test result has an uncertainty which should be estimated and stated (e.g. in accordance with GUM). Very often this is not the case. Further, discussions often arise on the issue of how the uncertainty shall be considered in relationship to the acceptance limit. The intention of this note is to desc
39#
發(fā)表于 2025-3-28 09:06:58 | 只看該作者
40#
發(fā)表于 2025-3-28 11:56:17 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
墨竹工卡县| 萨嘎县| 顺义区| 永福县| 泽州县| 桑植县| 昌黎县| 广平县| 新乐市| 肃南| 泽州县| 江川县| 白银市| 萨迦县| 永州市| 阜宁县| 石台县| 九寨沟县| 新安县| 阜新| 江永县| 江口县| 达拉特旗| 新田县| 盈江县| 曲沃县| 昭平县| 台南市| 顺义区| 屯留县| 分宜县| 乌兰县| 沛县| 灵璧县| 龙海市| 温州市| 连江县| 葫芦岛市| 崇明县| 额济纳旗| 五家渠市|