找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure, Topology, and Fractal Geometry; Gerald A. Edgar Textbook 19901st edition Springer-Verlag New York 1990 DEX.Mathematica.addition.a

[復(fù)制鏈接]
樓主: POL
21#
發(fā)表于 2025-3-25 03:27:14 | 只看該作者
Metric Topology,would be the first chapter of the book; but I included instead some more fractal-like material as Chapter 1. Chapter 2 is a more technical chapter. Have patience! It really is useful for the understanding of the rest of the book.
22#
發(fā)表于 2025-3-25 09:46:59 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:29 | 只看該作者
Springer-Verlag New York 1990
24#
發(fā)表于 2025-3-25 16:54:57 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:00 | 只看該作者
Fractal Examples,A few basic mathematical examples of fractals will be introduced in this chapter. Their analysis, and especially the question of what makes them “fractals” must be postponed until much later in the book.
26#
發(fā)表于 2025-3-26 00:08:43 | 只看該作者
Self-Similarity,There are several variant notions of “dimension” that may be classified as fractal dimensions. The most widely used is known as the Hausdorff dimension. It will be considered in Chapter 6. We begin here with the ., a fractal dimension that is easier to define (but not as useful).
27#
發(fā)表于 2025-3-26 06:45:19 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:35 | 只看該作者
Hausdorff Dimension,Next we come to the “Hausdorff dimension”. This is the dimension singled out by Mandelbrot when he defined “fractal”. It is perhaps a bit more difficult to define than some of the other kinds of dimension that have been (and will be) considered. But it is also the most useful of the fractal dimensions.
29#
發(fā)表于 2025-3-26 13:17:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:17:07 | 只看該作者
https://doi.org/10.1007/978-1-4757-4134-6DEX; Mathematica; addition; algebraic topology; algorithms; computer; fractal; fractal geometry; geometry; me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳春市| 鄂托克前旗| 营口市| 天台县| 油尖旺区| 洛宁县| 富宁县| 泰宁县| 衡南县| 洱源县| 贵阳市| 东城区| 乌审旗| 大港区| 静海县| 毕节市| 元江| 辛集市| 崇信县| 岳池县| 凤冈县| 五大连池市| 宁阳县| 封丘县| 吕梁市| 皮山县| 清流县| 历史| 略阳县| 长汀县| 安多县| 崇仁县| 拉孜县| 临海市| 大英县| 加查县| 贡山| 齐齐哈尔市| 佳木斯市| 万源市| 荣昌县|