找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure, Topology, and Fractal Geometry; Gerald A. Edgar Textbook 19901st edition Springer-Verlag New York 1990 DEX.Mathematica.addition.a

[復(fù)制鏈接]
樓主: POL
21#
發(fā)表于 2025-3-25 03:27:14 | 只看該作者
Metric Topology,would be the first chapter of the book; but I included instead some more fractal-like material as Chapter 1. Chapter 2 is a more technical chapter. Have patience! It really is useful for the understanding of the rest of the book.
22#
發(fā)表于 2025-3-25 09:46:59 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:29 | 只看該作者
Springer-Verlag New York 1990
24#
發(fā)表于 2025-3-25 16:54:57 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:00 | 只看該作者
Fractal Examples,A few basic mathematical examples of fractals will be introduced in this chapter. Their analysis, and especially the question of what makes them “fractals” must be postponed until much later in the book.
26#
發(fā)表于 2025-3-26 00:08:43 | 只看該作者
Self-Similarity,There are several variant notions of “dimension” that may be classified as fractal dimensions. The most widely used is known as the Hausdorff dimension. It will be considered in Chapter 6. We begin here with the ., a fractal dimension that is easier to define (but not as useful).
27#
發(fā)表于 2025-3-26 06:45:19 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:35 | 只看該作者
Hausdorff Dimension,Next we come to the “Hausdorff dimension”. This is the dimension singled out by Mandelbrot when he defined “fractal”. It is perhaps a bit more difficult to define than some of the other kinds of dimension that have been (and will be) considered. But it is also the most useful of the fractal dimensions.
29#
發(fā)表于 2025-3-26 13:17:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:17:07 | 只看該作者
https://doi.org/10.1007/978-1-4757-4134-6DEX; Mathematica; addition; algebraic topology; algorithms; computer; fractal; fractal geometry; geometry; me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大新县| 霍城县| 扶沟县| 汨罗市| 乌拉特前旗| 五台县| 边坝县| 宿州市| 秭归县| 乳源| 哈密市| 岳池县| 孟州市| 武穴市| 白城市| 大竹县| 平昌县| 托里县| 桑植县| 巴青县| 嘉善县| 科技| 赞皇县| 潼南县| 化德县| 武城县| 兴化市| 高邮市| 迁西县| 沭阳县| 双流县| 汕头市| 沁水县| 吴忠市| 乐都县| 双柏县| 托克托县| 阳山县| 平塘县| 常德市| 绥江县|