找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure, Topology, and Fractal Geometry; Gerald A. Edgar Textbook 19901st edition Springer-Verlag New York 1990 DEX.Mathematica.addition.a

[復(fù)制鏈接]
樓主: POL
21#
發(fā)表于 2025-3-25 03:27:14 | 只看該作者
Metric Topology,would be the first chapter of the book; but I included instead some more fractal-like material as Chapter 1. Chapter 2 is a more technical chapter. Have patience! It really is useful for the understanding of the rest of the book.
22#
發(fā)表于 2025-3-25 09:46:59 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:29 | 只看該作者
Springer-Verlag New York 1990
24#
發(fā)表于 2025-3-25 16:54:57 | 只看該作者
25#
發(fā)表于 2025-3-25 23:56:00 | 只看該作者
Fractal Examples,A few basic mathematical examples of fractals will be introduced in this chapter. Their analysis, and especially the question of what makes them “fractals” must be postponed until much later in the book.
26#
發(fā)表于 2025-3-26 00:08:43 | 只看該作者
Self-Similarity,There are several variant notions of “dimension” that may be classified as fractal dimensions. The most widely used is known as the Hausdorff dimension. It will be considered in Chapter 6. We begin here with the ., a fractal dimension that is easier to define (but not as useful).
27#
發(fā)表于 2025-3-26 06:45:19 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:35 | 只看該作者
Hausdorff Dimension,Next we come to the “Hausdorff dimension”. This is the dimension singled out by Mandelbrot when he defined “fractal”. It is perhaps a bit more difficult to define than some of the other kinds of dimension that have been (and will be) considered. But it is also the most useful of the fractal dimensions.
29#
發(fā)表于 2025-3-26 13:17:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:17:07 | 只看該作者
https://doi.org/10.1007/978-1-4757-4134-6DEX; Mathematica; addition; algebraic topology; algorithms; computer; fractal; fractal geometry; geometry; me
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延安市| 阳西县| 利辛县| 竹山县| 德令哈市| 会泽县| 仲巴县| 崇礼县| 揭西县| 于都县| 永年县| 吴旗县| 买车| 德保县| 大悟县| 盐城市| 洛浦县| 鱼台县| 海城市| 成都市| 霍州市| 泗水县| 仙居县| 株洲县| 台湾省| 秀山| 丰城市| 龙州县| 屏东市| 滨海县| 邳州市| 扬中市| 卢湾区| 乐平市| 铜陵市| 金山区| 白沙| 文昌市| 称多县| 东方市| 云浮市|