| 書目名稱 | Measure and Integral |
| 副標(biāo)題 | Volume 1 |
| 編輯 | John L. Kelley,T. P. Srinivasan |
| 視頻video | http://file.papertrans.cn/629/628054/628054.mp4 |
| 叢書名稱 | Graduate Texts in Mathematics |
| 圖書封面 |  |
| 描述 | This is a systematic exposition of the basic part of the theory of mea- sure and integration. The book is intended to be a usable text for students with no previous knowledge of measure theory or Lebesgue integration, but it is also intended to include the results most com- monly used in functional analysis. Our two intentions are some what conflicting, and we have attempted a resolution as follows. The main body of the text requires only a first course in analysis as background. It is a study of abstract measures and integrals, and comprises a reasonably complete account of Borel measures and in- tegration for R Each chapter is generally followed by one or more supplements. These, comprising over a third of the book, require some- what more mathematical background and maturity than the body of the text (in particular, some knowledge of general topology is assumed) and the presentation is a little more brisk and informal. The material presented includes the theory of Borel measures and integration for ~n, the general theory of integration for locally compact Hausdorff spaces, and the first dozen results about invariant measures for groups. Most of the results expounded here are con |
| 出版日期 | Textbook 1988 |
| 關(guān)鍵詞 | banach spaces; convergence; integral; integration; maximum; measure |
| 版次 | 1 |
| doi | https://doi.org/10.1007/978-1-4612-4570-4 |
| isbn_softcover | 978-1-4612-8928-9 |
| isbn_ebook | 978-1-4612-4570-4Series ISSN 0072-5285 Series E-ISSN 2197-5612 |
| issn_series | 0072-5285 |
| copyright | Springer-Verlag New York Inc. 1988 |