找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Measure and Category; A Survey of the Anal John C. Oxtoby Textbook 19711st edition Springer-Verlag New York 1971 calculus

[復(fù)制鏈接]
樓主: Washington
41#
發(fā)表于 2025-3-28 15:11:11 | 只看該作者
Examples of Metric Spaces,Let ., or .[., .], denote the set of all real-valued continuous functions . on the interval[., .], and define.It is easy to verify that ? is a metric in .; in particular, the triangle inequality follows from the fact that.for all . in [., .]. Convergence in this metric means uniform convergence on [., .]. For this reason, ? is called the ..
42#
發(fā)表于 2025-3-28 20:33:52 | 只看該作者
The Theorem of Alexandroff,Any subset of a metric space is itself a metric space, with the same distance function. It is obvious that any closed subset of a complete metric space is complete with respect to the same metric.
43#
發(fā)表于 2025-3-29 01:53:53 | 只看該作者
The Kuratowski-Ulam Theorem,Fubini’s theorem has a category analogue. In its general formulation, this theorem was proved in 1932 by Kuratowski and Ulam [18, p. 222].
44#
發(fā)表于 2025-3-29 06:40:37 | 只看該作者
45#
發(fā)表于 2025-3-29 09:59:55 | 只看該作者
46#
發(fā)表于 2025-3-29 14:57:34 | 只看該作者
Transforming Linear Sets into Nullsets,t .(.) is a nullset. In fact, letting . = . ? . it suffices to take.This is a strictly increasing continuous map of . onto itself. The intervals that compose . are mapped onto a sequence of intervals of total length 1. Hence .(.) is a nullset.
47#
發(fā)表于 2025-3-29 18:53:17 | 只看該作者
Transitive Transformations,jects whose existence was already known. Liouville numbers, nowhere differentiable continuous functions, Brouwer’s transformation of the square, were known before the category method was applied. It may therefore be of interest to consider one problem whose solution was first obtained by the category method.
48#
發(fā)表于 2025-3-29 23:42:02 | 只看該作者
49#
發(fā)表于 2025-3-30 02:19:00 | 只看該作者
Springer-Verlag New York 1971
50#
發(fā)表于 2025-3-30 04:30:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳州市| 长丰县| 乐都县| 卢龙县| 桃江县| 噶尔县| 鞍山市| 郧西县| 安塞县| 乐业县| 拉萨市| 县级市| 锡林郭勒盟| 元江| 曲沃县| 平舆县| 平顶山市| 齐齐哈尔市| 四会市| 治县。| 松溪县| 交城县| 灵川县| 五台县| 易门县| 宝丰县| 赞皇县| 潮安县| 手游| 将乐县| 和平区| 辽宁省| 南召县| 丹棱县| 高唐县| 南宁市| 罗城| 宝坻区| 工布江达县| 富平县| 大宁县|