找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mean Field Games and Mean Field Type Control Theory; Alain Bensoussan,Jens Frehse,Phillip Yam Book 2013 Alain Bensoussan, Jens Frehse, Phi

[復(fù)制鏈接]
樓主: ambulance
31#
發(fā)表于 2025-3-26 21:44:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:17:16 | 只看該作者
Mean Field Games and Mean Field Type Control Theory
33#
發(fā)表于 2025-3-27 07:46:18 | 只看該作者
Introduction,t, mean field games are control problems, in the sense that one is interested in a single decision maker, who we call the representative agent. However, these problems are not standard, since both the evolution of the state and the objective functional are influenced by terms that are not directly r
34#
發(fā)表于 2025-3-27 11:52:15 | 只看該作者
The Mean Field Games,has a density with respect to the Lebesgue measure denoted by .(., .), which is the solution of the Fokker–Planck equation . We next want the feedback . to solve a standard control problem, in which . appears as a parameter. We can thus readily associate an HJB equation with this problem, parametriz
35#
發(fā)表于 2025-3-27 17:14:31 | 只看該作者
36#
發(fā)表于 2025-3-27 19:20:01 | 只看該作者
37#
發(fā)表于 2025-3-27 22:15:23 | 只看該作者
38#
發(fā)表于 2025-3-28 03:24:32 | 只看該作者
39#
發(fā)表于 2025-3-28 06:16:09 | 只看該作者
Nash Differential Games with Mean Field Effect,erms influencing both the evolution and the objective functional of this agent. The terminology game comes from the fact that the optimal feedback of the representative agent can be used as an approximation for a Nash equilibrium of a large community of agents that are identical. In Sect. 8.2 we hav
40#
發(fā)表于 2025-3-28 12:03:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
策勒县| 江阴市| 乌审旗| 包头市| 三都| 新竹县| 隆回县| 鄂托克前旗| 通城县| 海原县| 大港区| 高尔夫| 布尔津县| 海淀区| 集安市| 赞皇县| 团风县| 日照市| 林口县| 兴义市| 万源市| 莱阳市| 镇沅| 迭部县| 舞阳县| 罗城| 定陶县| 龙川县| 常德市| 望谟县| 吴忠市| 吴堡县| 贵溪市| 茌平县| 淮阳县| 济南市| 百色市| 阿图什市| 葵青区| 临潭县| 尚义县|