書目名稱 | Ma? und Kategorie | 編輯 | John C. Oxtoby,Klaus Schürger | 視頻video | http://file.papertrans.cn/628/627938/627938.mp4 | 叢書名稱 | Hochschultext | 圖書封面 |  | 描述 | Dieses Buch behandelt haupts?chlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualit?t" zwischen Ma? und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erl?utert; die Analogie, die zwischen Ma? und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; au?erdem werden grundlegende Eigenschaften des Lebesgue- schen Ma?es hergeleitet. Es zeigt sich, da? die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern da? das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Ma?theorie und Topologie eingeführt; dies geschieht jedoch nicht nur der gr??eren Allgemeinheit wegen. Es erübrigt sich fast zu erw?hnen, da? sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be- zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten P | 出版日期 | Textbook 19711st edition | 關(guān)鍵詞 | Algebra; Cantor; Funktion; Grenzwert; Invariante; Kategorie (Math; ); Kategorientheorie; Mass; Mass (Math; ); M | 版次 | 1 | doi | https://doi.org/10.1007/978-3-642-96074-1 | isbn_softcover | 978-3-540-05393-4 | isbn_ebook | 978-3-642-96074-1 | copyright | Springer-Verlag Berlin · Heidelberg 1971 |
The information of publication is updating
|
|