找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Maximum Principles in Differential Equations; Murray H. Protter,Hans F. Weinberger Book 1984 Springer-Verlag New York, Inc. 1984 Boundary

[復(fù)制鏈接]
查看: 11888|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:51:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Maximum Principles in Differential Equations
編輯Murray H. Protter,Hans F. Weinberger
視頻videohttp://file.papertrans.cn/628/627916/627916.mp4
圖書(shū)封面Titlebook: Maximum Principles in Differential Equations;  Murray H. Protter,Hans F. Weinberger Book 1984 Springer-Verlag New York, Inc. 1984 Boundary
描述Maximum Principles are central to the theory and applications of second-order partial differential equations and systems. This self-contained text establishes the fundamental principles and provides a variety of applications.
出版日期Book 1984
關(guān)鍵詞Boundary value problem; Derivative; Eigenvalue; Equations; differential equation; hyperbolic equation; max
版次1
doihttps://doi.org/10.1007/978-1-4612-5282-5
isbn_softcover978-1-4612-9769-7
isbn_ebook978-1-4612-5282-5
copyrightSpringer-Verlag New York, Inc. 1984
The information of publication is updating

書(shū)目名稱Maximum Principles in Differential Equations影響因子(影響力)




書(shū)目名稱Maximum Principles in Differential Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱Maximum Principles in Differential Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Maximum Principles in Differential Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Maximum Principles in Differential Equations被引頻次




書(shū)目名稱Maximum Principles in Differential Equations被引頻次學(xué)科排名




書(shū)目名稱Maximum Principles in Differential Equations年度引用




書(shū)目名稱Maximum Principles in Differential Equations年度引用學(xué)科排名




書(shū)目名稱Maximum Principles in Differential Equations讀者反饋




書(shū)目名稱Maximum Principles in Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:28 | 只看該作者
https://doi.org/10.1007/978-1-4612-5282-5Boundary value problem; Derivative; Eigenvalue; Equations; differential equation; hyperbolic equation; max
板凳
發(fā)表于 2025-3-22 03:48:08 | 只看該作者
Hyperbolic Equations,n the simplest case of the wave equation in two independent variables* . it is easily seen that the maximum of a nonconstant solution . in a domain . may occur at an interior point. For example, we observe that the function . satisfies the above equation, and that it attains its maximum in the square 0 < . < ., 0 < . < ., at the center (./2, ./2).
地板
發(fā)表于 2025-3-22 06:21:36 | 只看該作者
5#
發(fā)表于 2025-3-22 10:33:49 | 只看該作者
Elliptic Equations,Let .(. .,..., .) be a twice continuously differentiable function defined in a domain . in .-dimensional Euclidean space. The . or . Δ is defined as .. If the equation Δ. = 0 is satisfied at each point of a domain ., we say that . is . in . or, simply, that . is a ..
6#
發(fā)表于 2025-3-22 15:34:45 | 只看該作者
http://image.papertrans.cn/m/image/627916.jpg
7#
發(fā)表于 2025-3-22 19:10:47 | 只看該作者
8#
發(fā)表于 2025-3-22 21:42:13 | 只看該作者
9#
發(fā)表于 2025-3-23 01:30:10 | 只看該作者
ations have inspired us to prepare this book. Prague, Czech Republic Miroslav K′ arn′ y October 2004 Josef B¨ ohm Tatiana V. Guy Ladislav Jirsa Ivan Nagy Petr Nedoma Ludv′ ?k Tesa? r Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10#
發(fā)表于 2025-3-23 09:00:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 20:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莆田市| 横峰县| 余姚市| 灵台县| 北票市| 繁峙县| 乐清市| 来凤县| 云南省| 辽阳市| 星子县| 绥化市| 卢龙县| 沈阳市| 应用必备| 沁水县| 昌邑市| 元氏县| 西充县| 明溪县| 那坡县| 泉州市| 云南省| 宝兴县| 无锡市| 梓潼县| 新平| 谷城县| 永济市| 崇阳县| 焉耆| 桃园市| 社旗县| 景泰县| 连江县| 尤溪县| 大丰市| 洪泽县| 论坛| 龙陵县| 历史|