找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Maximum Entropy and Bayesian Methods; Cambridge, England, John Skilling,Sibusiso Sibisi Conference proceedings 1996 Kluwer Academic Publis

[復(fù)制鏈接]
查看: 35750|回復(fù): 62
樓主
發(fā)表于 2025-3-21 20:05:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Maximum Entropy and Bayesian Methods
副標(biāo)題Cambridge, England,
編輯John Skilling,Sibusiso Sibisi
視頻videohttp://file.papertrans.cn/628/627905/627905.mp4
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: Maximum Entropy and Bayesian Methods; Cambridge, England,  John Skilling,Sibusiso Sibisi Conference proceedings 1996 Kluwer Academic Publis
描述This volume records papers given at the fourteenth international maximum entropy conference, held at St John‘s College Cambridge, England. It seems hard to believe that just thirteen years have passed since the first in the series, held at the University of Wyoming in 1981, and six years have passed since the meeting last took place here in Cambridge. So much has happened. There are two major themes at these meetings, inference and physics. The inference work uses the confluence of Bayesian and maximum entropy ideas to develop and explore a wide range of scientific applications, mostly concerning data analysis in one form or another. The physics work uses maximum entropy ideas to explore the thermodynamic world of macroscopic phenomena. Of the two, physics has the deeper historical roots, and much of the inspiration behind the inference work derives from physics. Yet it is no accident that most of the papers at these meetings are on the inference side. To develop new physics, one must use one‘s brains alone. To develop inference, computers are used as well, so that the stunning advances in computational power render the field open to rapid advance. Indeed, we have seen a revolution
出版日期Conference proceedings 1996
關(guān)鍵詞Markov model; Probability theory; classification; image processing; maximum entropy method; neural networ
版次1
doihttps://doi.org/10.1007/978-94-009-0107-0
isbn_softcover978-94-010-6534-4
isbn_ebook978-94-009-0107-0Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightKluwer Academic Publishers 1996
The information of publication is updating

書目名稱Maximum Entropy and Bayesian Methods影響因子(影響力)




書目名稱Maximum Entropy and Bayesian Methods影響因子(影響力)學(xué)科排名




書目名稱Maximum Entropy and Bayesian Methods網(wǎng)絡(luò)公開度




書目名稱Maximum Entropy and Bayesian Methods網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Maximum Entropy and Bayesian Methods被引頻次




書目名稱Maximum Entropy and Bayesian Methods被引頻次學(xué)科排名




書目名稱Maximum Entropy and Bayesian Methods年度引用




書目名稱Maximum Entropy and Bayesian Methods年度引用學(xué)科排名




書目名稱Maximum Entropy and Bayesian Methods讀者反饋




書目名稱Maximum Entropy and Bayesian Methods讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:58:02 | 只看該作者
Bayesian Estimation of MR Images from Incomplete Raw Data are .uniformly distributed, which hampers Fourier transformation to the image domain. With the aid of Bayesian formalism we estimate an image that satisfies prior knowledge while its inverse Fourier transform is compatible with the acquired samples. The new technique is applied successfully to a re
板凳
發(fā)表于 2025-3-22 00:34:17 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:01 | 只看該作者
The Vital Importance of Prior Information for the Decomposition of Ion Scattering Spectroscopy Dataexample of Pd adsorption on a Ru surface is particularly challenging because 13 partially overlapping isotopes contribute to the total scattering signal. Proper decomposition using appropriate prior information enables accurate coverage determination.
5#
發(fā)表于 2025-3-22 11:51:46 | 只看該作者
6#
發(fā)表于 2025-3-22 14:05:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:16:44 | 只看該作者
8#
發(fā)表于 2025-3-22 21:55:57 | 只看該作者
The Maximum-Entropy Method in Small-Angle Scatteringis purpose suffer from problems caused by their ad hoc nature, but the Maximum-Entropy method has a well established theoretical foundation offering several advantages. Examples are given using simulated as well as experimental data. It is demonstrated that the “best” (most likely) choice of paramet
9#
發(fā)表于 2025-3-23 01:48:19 | 只看該作者
Maximum Entropy Multi-Resolution EM Tomography by Adaptive Subdivisionexploration or environmental tests. Low resolution is generally the major limitation in the EM tomography. If a high resolution is sought, many artifacts with random patterns will show in the resultant image of the reconstruction if a least square error criterion is applied. The maximum entropy cons
10#
發(fā)表于 2025-3-23 07:06:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南陵县| 绥德县| 敦化市| 务川| 五峰| 清远市| 中方县| 阳原县| 武威市| 安乡县| 秦安县| 大城县| 南康市| 疏勒县| 沙雅县| 平遥县| 武义县| 申扎县| 甘孜| 西乌| 正镶白旗| 晋城| 莱阳市| 丹江口市| 崇明县| 东海县| 临江市| 祁连县| 罗定市| 大庆市| 双鸭山市| 连山| 嘉鱼县| 海阳市| 包头市| 江城| 即墨市| 江油市| 新邵县| 万全县| 且末县|