找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrizentheorie; Felix R. Gantmacher Textbook 1986 der deutschsprachigen Ausgabe 1986 Binom.Determinanten.Ebene.Matrix.Matrizen.Matrizenth

[復(fù)制鏈接]
樓主: 脾氣好
31#
發(fā)表于 2025-3-26 20:57:56 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:29 | 只看該作者
33#
發(fā)表于 2025-3-27 07:29:15 | 只看該作者
978-3-642-71244-9der deutschsprachigen Ausgabe 1986
34#
發(fā)表于 2025-3-27 11:45:53 | 只看該作者
Overview: 978-3-642-71244-9978-3-642-71243-2
35#
發(fā)表于 2025-3-27 14:12:46 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:57 | 只看該作者
Lineare Operatoren im ,-dimensionalen VektorraumDie Matrizen bilden ein wesentliches Hilfsmittel zur Untersuchung linearer Operatoren im .-dimensionalen Vektorraum. Die Untersuchung dieser Operatoren gestattet es andererseits, eine Klasseneinteilung der Matrizen vorzunehmen und die Eigenschaften anzugeben, die für die Matrizen ein und derselben Klasse charakteristisch sind.
37#
發(fā)表于 2025-3-27 22:24:16 | 只看該作者
MatrizenfunktionenGegeben seien eine quadratische Matrix . = ‖.‖.. und eine Funktion .(.) mit skalaren .. Es erweist sich als notwendig zu erkl?ren, was wir unter dem Ausdruck .(.) verstehen wollen, d. h., wir wollen die Funktion .(.) auch für Matrizenargumente definieren.
38#
發(fā)表于 2025-3-28 04:16:59 | 只看該作者
MatrizengleichungenIn diesem Kapitel untersuchen wir einige Typen von Matrizengleichungen, denen man bei verschiedenen Fragen der Matrizentheorie und ihrer Anwendungen begegnet.
39#
發(fā)表于 2025-3-28 10:12:02 | 只看該作者
Quadratische und hermitesche FormenEine . ist ein homogenes Polynom zweiten Grades in . Ver?nderlichen ., ., ., .. Sie kann stets durch. dargestellt werden; dabei ist . = ‖.‖. eine symmetrische Matrix.
40#
發(fā)表于 2025-3-28 13:46:10 | 只看該作者
Verschiedene Regularit?tskriterien und die Lokalisierung der charakteristischen WurzelnEs sei . = ‖.‖. eine beliebige Matrix vom Typ (.) mit komplexen Elementen. Wir nehmen an, die Matrix sei singul?r, d. h. |.| = 0. Dann existieren Zahlen ., ., ..., . mit maximalem |.|> 0 derart, da? . ist..) Dabei ist ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于都县| 邵武市| 延庆县| 哈密市| 张家港市| 乌苏市| 渭源县| 墨竹工卡县| 新昌县| 克拉玛依市| 浪卡子县| 顺平县| 临高县| 晴隆县| 玉环县| 肃北| 潢川县| 买车| 黄山市| 泸定县| 大庆市| 巴南区| 黑河市| 四会市| 达尔| 宿迁市| 镇赉县| 和林格尔县| 庆安县| 当阳市| 屏东县| 建昌县| 宁远县| 公安县| 新营市| 延寿县| 永顺县| 鸡东县| 台湾省| 铁岭县| 龙岩市|