找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix Groups; Morton L. Curtis Textbook 1984Latest edition Springer-Verlag New York Inc. 1984 Abelian group.Algebra.Group theory.Groups.M

[復(fù)制鏈接]
查看: 28901|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:53:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Matrix Groups
編輯Morton L. Curtis
視頻videohttp://file.papertrans.cn/628/627748/627748.mp4
叢書(shū)名稱Universitext
圖書(shū)封面Titlebook: Matrix Groups;  Morton L. Curtis Textbook 1984Latest edition Springer-Verlag New York Inc. 1984 Abelian group.Algebra.Group theory.Groups.M
描述These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has a
出版日期Textbook 1984Latest edition
關(guān)鍵詞Abelian group; Algebra; Group theory; Groups; Matrizengruppe; Vector space; homomorphism
版次2
doihttps://doi.org/10.1007/978-1-4612-5286-3
isbn_softcover978-0-387-96074-6
isbn_ebook978-1-4612-5286-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

書(shū)目名稱Matrix Groups影響因子(影響力)




書(shū)目名稱Matrix Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱Matrix Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Matrix Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Matrix Groups被引頻次




書(shū)目名稱Matrix Groups被引頻次學(xué)科排名




書(shū)目名稱Matrix Groups年度引用




書(shū)目名稱Matrix Groups年度引用學(xué)科排名




書(shū)目名稱Matrix Groups讀者反饋




書(shū)目名稱Matrix Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:22:13 | 只看該作者
地板
發(fā)表于 2025-3-22 04:56:05 | 只看該作者
5#
發(fā)表于 2025-3-22 12:26:34 | 只看該作者
Exponential and Logarithm,Given a matrix group G we have defined a vector space T -- the tangent space to G at I . In this chapter we develop maps to send T to G and G to T and study their properties. We will work with real matrices -- developments for ? and ? are quite analogous. (We need these maps to determine dimensions of some of our matrix groups.)
6#
發(fā)表于 2025-3-22 16:20:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:52:14 | 只看該作者
Topology,Our matrix groups are all subsets of euclidean spaces, because they are all subsets of.
8#
發(fā)表于 2025-3-22 21:40:25 | 只看該作者
Maximal Tori,If G and H are groups, we make G × H into a group by defining ..
9#
發(fā)表于 2025-3-23 03:32:42 | 只看該作者
Conjugacy of Maximal Tori,: A subset Y of a space X is said to be . . X if every nonempty open set in X contains at least one point in Y.
10#
發(fā)表于 2025-3-23 05:58:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
慈利县| 平遥县| 灵宝市| 庆阳市| 普洱| 屏东市| 岢岚县| 临猗县| 宜川县| 稷山县| 信阳市| 明溪县| 梁山县| 故城县| 黄龙县| 晋城| 雅江县| 佛冈县| 灵石县| 拉萨市| 仙游县| 日土县| 南安市| 晋中市| 铜山县| 贵德县| 于都县| 通江县| 平山县| 绩溪县| 新宁县| 三河市| 长兴县| 中方县| 乌恰县| 隆尧县| 额济纳旗| 临安市| 辰溪县| 奈曼旗| 滕州市|