找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix Convolution Operators on Groups; Cho-Ho Chu Book 2008 Springer-Verlag Berlin Heidelberg 2008 Harmonic function.Jordan algebra.Matri

[復制鏈接]
樓主: Gram114
21#
發(fā)表于 2025-3-25 07:20:09 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:15 | 只看該作者
aken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its978-1-4899-2595-4978-1-4899-2593-0
23#
發(fā)表于 2025-3-25 15:17:31 | 只看該作者
in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its
24#
發(fā)表于 2025-3-25 17:21:46 | 只看該作者
25#
發(fā)表于 2025-3-25 21:08:27 | 只看該作者
y be improved in particular for less "nasty" problems..Finally, it is discussed how such derivative — free curve — tracing methods may be used to deal with bifurcation points caused by an index jump in the sense of Crandall — Rabinowitz [11]. Instead of using a local perturbation [15] in the sense o
26#
發(fā)表于 2025-3-26 01:05:25 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:26 | 只看該作者
0075-8434 and applications to harmonic functions on Lie groups and Riemannian symmetric spaces are discussed. An interesting feature is the presence of Jordan algebraic structures in matrix-harmonic functions..978-3-540-69797-8978-3-540-69798-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
28#
發(fā)表于 2025-3-26 08:47:22 | 只看該作者
29#
發(fā)表于 2025-3-26 14:54:30 | 只看該作者
30#
發(fā)表于 2025-3-26 19:47:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泸定县| 仪征市| 丰都县| 襄樊市| 宝丰县| 开封市| 阿图什市| 沈丘县| 鹰潭市| 金山区| 永嘉县| 宝山区| 德令哈市| 谢通门县| 婺源县| 北京市| 乌拉特前旗| 英吉沙县| 安阳市| 永仁县| 乌拉特后旗| 云和县| 怀柔区| 宝山区| 福鼎市| 会泽县| 广灵县| 宣恩县| 武胜县| 北辰区| 南丰县| 溆浦县| 台东县| 遂昌县| 建宁县| 新闻| 乌苏市| 固阳县| 木里| 林芝县| 寿光市|