找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrix Analysis; Rajendra Bhatia Textbook 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.approximation.calculus.Eigenvalue.exponentia

[復(fù)制鏈接]
查看: 49822|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:30:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Matrix Analysis
編輯Rajendra Bhatia
視頻videohttp://file.papertrans.cn/628/627736/627736.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Matrix Analysis;  Rajendra Bhatia Textbook 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.approximation.calculus.Eigenvalue.exponentia
描述A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu- ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe- matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic lin- ear algebra. The standard texts Finite-Dimens
出版日期Textbook 1997
關(guān)鍵詞algebra; approximation; calculus; Eigenvalue; exponential function; inequality; linear algebra; matrices; ma
版次1
doihttps://doi.org/10.1007/978-1-4612-0653-8
isbn_softcover978-1-4612-6857-4
isbn_ebook978-1-4612-0653-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

書目名稱Matrix Analysis影響因子(影響力)




書目名稱Matrix Analysis影響因子(影響力)學(xué)科排名




書目名稱Matrix Analysis網(wǎng)絡(luò)公開(kāi)度




書目名稱Matrix Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Matrix Analysis被引頻次




書目名稱Matrix Analysis被引頻次學(xué)科排名




書目名稱Matrix Analysis年度引用




書目名稱Matrix Analysis年度引用學(xué)科排名




書目名稱Matrix Analysis讀者反饋




書目名稱Matrix Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:59 | 只看該作者
Perturbation of Spectral Subspaces of Normal Matrices,their eigenvectors remain stubbornly apart. Note, however, that the . that these two eigenvectors of . and . span are identical. In this chapter we will see that interesting and useful perturbation bounds may be obtained for eigenspaces corresponding to closely bunched eigenvalues of normal matrices.
板凳
發(fā)表于 2025-3-22 02:33:32 | 只看該作者
Spectral Variation of Normal Matrices,orem: if . are two Hermitian matrices, then..In turn, this inequality is a special case of the inequality (IV.62), which says that if Eig↓ (.) denotes the diagonal matrix with entries λ↓. (.) down its diagonal, then we have for all Hermitian matrices . and for all unitarily invariant norms.
地板
發(fā)表于 2025-3-22 06:58:30 | 只看該作者
Spectral Variation of Nonnormal Matrices,quality .(σ(.), σ(.)) ≤ 3|| .|| (Theorem VII.4.1). If one of the matrices . is Hermitian and the other is arbitrary, then we can only have an inequality of the form .(σ(.), σ(.)) ≤ .)||. — B||, where .) is a constant that grows like log . (Problems VI.8.8 and VI.8.9).
5#
發(fā)表于 2025-3-22 11:29:00 | 只看該作者
6#
發(fā)表于 2025-3-22 14:35:49 | 只看該作者
7#
發(fā)表于 2025-3-22 20:22:47 | 只看該作者
8#
發(fā)表于 2025-3-22 22:17:18 | 只看該作者
978-1-4612-6857-4Springer-Verlag Berlin Heidelberg 1997
9#
發(fā)表于 2025-3-23 03:16:53 | 只看該作者
Matrix Analysis978-1-4612-0653-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
10#
發(fā)表于 2025-3-23 06:52:06 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/m/image/627736.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
从化市| 盐山县| 银川市| 鄄城县| 太白县| 旅游| 隆化县| 呼伦贝尔市| 宁远县| 尼勒克县| 石门县| 盐城市| 武山县| 海丰县| 密云县| 永定县| 丹江口市| 清原| 东宁县| 巢湖市| 马关县| 三河市| 阿合奇县| 延吉市| 威海市| 台山市| 云梦县| 大足县| 宜川县| 广河县| 永宁县| 绥阳县| 建水县| 延安市| 沙湾县| 江都市| 博爱县| 卫辉市| 大冶市| 三原县| 攀枝花市|