找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Matrices in Combinatorics and Graph Theory; Bolian Liu,Hong-Jian Lai Book 2000 Springer Science+Business Media Dordrecht 2000 Matrix.Matri

[復(fù)制鏈接]
查看: 55709|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:42:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Matrices in Combinatorics and Graph Theory
編輯Bolian Liu,Hong-Jian Lai
視頻videohttp://file.papertrans.cn/628/627725/627725.mp4
叢書名稱Network Theory and Applications
圖書封面Titlebook: Matrices in Combinatorics and Graph Theory;  Bolian Liu,Hong-Jian Lai Book 2000 Springer Science+Business Media Dordrecht 2000 Matrix.Matri
描述Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis
出版日期Book 2000
關(guān)鍵詞Matrix; Matrix Theory; algebra; calculus; combinatorics; graph theory; linear algebra
版次1
doihttps://doi.org/10.1007/978-1-4757-3165-1
isbn_softcover978-1-4419-4834-2
isbn_ebook978-1-4757-3165-1Series ISSN 1568-1696
issn_series 1568-1696
copyrightSpringer Science+Business Media Dordrecht 2000
The information of publication is updating

書目名稱Matrices in Combinatorics and Graph Theory影響因子(影響力)




書目名稱Matrices in Combinatorics and Graph Theory影響因子(影響力)學(xué)科排名




書目名稱Matrices in Combinatorics and Graph Theory網(wǎng)絡(luò)公開(kāi)度




書目名稱Matrices in Combinatorics and Graph Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Matrices in Combinatorics and Graph Theory被引頻次




書目名稱Matrices in Combinatorics and Graph Theory被引頻次學(xué)科排名




書目名稱Matrices in Combinatorics and Graph Theory年度引用




書目名稱Matrices in Combinatorics and Graph Theory年度引用學(xué)科排名




書目名稱Matrices in Combinatorics and Graph Theory讀者反饋




書目名稱Matrices in Combinatorics and Graph Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:14 | 只看該作者
Appendix, . and 1 ≤ . ≤ ., the symbol (.). denotes the (.)-entry of ., whereas .. denote a block submatrix of .. If . = (.., ..,?, ..) . denotes an .-dimensional vector, then (.). denotes the .th component .. of ..
板凳
發(fā)表于 2025-3-22 02:38:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:39:52 | 只看該作者
5#
發(fā)表于 2025-3-22 11:58:11 | 只看該作者
https://doi.org/10.1007/978-1-4757-3165-1Matrix; Matrix Theory; algebra; calculus; combinatorics; graph theory; linear algebra
6#
發(fā)表于 2025-3-22 16:14:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:12:56 | 只看該作者
Matrices in Combinatorics and Graph Theory978-1-4757-3165-1Series ISSN 1568-1696
8#
發(fā)表于 2025-3-22 21:15:12 | 只看該作者
9#
發(fā)表于 2025-3-23 02:39:01 | 只看該作者
Combinatorial Properties of Matrices,Let . be a subset of a number field, and let ..(.) denote the set of all . × . matrices with entries in ., and let ..(.) = ..(.). Note that .. = ..({0,1}). We write .. = ..({. ≥ 0| . is real}) and .*. = ..({. > 0| . is real}). When the set . is not specified, we write .., and .. for ..(.) and ..(.), respectively.
10#
發(fā)表于 2025-3-23 09:02:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 02:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌平区| 斗六市| 开江县| 富顺县| 应用必备| 崇文区| 洱源县| 布拖县| 涟水县| 荔浦县| 资中县| 吉水县| 乐平市| 左云县| 南澳县| 昌都县| 嘉峪关市| 宁远县| 伊宁县| 东明县| 广元市| 资中县| 荔波县| 长泰县| 明溪县| 那坡县| 剑川县| 年辖:市辖区| 建始县| 龙陵县| 惠来县| 称多县| 长春市| 石门县| 彝良县| 洛扎县| 东莞市| 中阳县| 阳信县| 扶余县| 满城县|