找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematik à la Carte – Babylonische Algebra; Franz Lemmermeyer Textbook 2022 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenzi

[復(fù)制鏈接]
樓主: ACRO
21#
發(fā)表于 2025-3-25 05:04:50 | 只看該作者
Franz Lemmermeyerfor experts in this field.This is a revised version of ?the 1984 book of the same name but considerably modified and enlarged to accommodate the developments in recursive estimation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox fo
22#
發(fā)表于 2025-3-25 11:00:09 | 只看該作者
Franz Lemmermeyerfor experts in this field.This is a revised version of ?the 1984 book of the same name but considerably modified and enlarged to accommodate the developments in recursive estimation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox fo
23#
發(fā)表于 2025-3-25 13:55:18 | 只看該作者
mation and time series analysis that have occurred over the last quarter century. Also over this time, the CAPTAIN Toolbox for recursive estimation and time series analysis has been developed at Lancaster, for use in the Matlab.TM. software environment (see Appendix G). Consequently, the present ver
24#
發(fā)表于 2025-3-25 16:28:31 | 只看該作者
Zahlen in der Antike,iedene solcher Methoden vorzustellen, und wir wollen das Allernotwendigste zur Geschichte der sumerischen und babylonischen Kultur sagen. W?hrend der Geschichte ?gyptens, Griechenlands und Roms im Unterricht vergleichsweise viel Platz einger?umt wird, wei? ein durchschnittlicher Abiturient über Sumer und Babylon in der Regel gar nichts.
25#
發(fā)表于 2025-3-25 20:52:02 | 只看該作者
Bruchrechnung,1/60, 1/60^2 usw. stehen, sodass man mit Keil und Winkelhaken auch Brüche schreiben kann. Um zu unterscheiden, wann 10,30 die Zahl 10 cdot 60 + 30 = 630 bezeichnet und wann 10 + 30/60 = 10 1/2, transkribieren wir die erste Zahl als 10,30 (oder 10,30;) und die zweite als 10;30. Das Semikolon entspricht in diesen F?llen unserem Dezimalkomma.
26#
發(fā)表于 2025-3-26 03:44:09 | 只看該作者
,Quadratische Erg?nzung,nt sind. Eine im Wesentlichen auf Diophant zurückgehende Methode besteht darin, der Unbekannten und ihrem Quadrat eigene Bezeichnungen zu geben. Bevor nach Vieta die heute üblichen Bezeichnungen die Oberhand gewannen, schrieb man die Unbekannte etwa als . und deren Quadrat als .; die Gleichung . h?tte man dann in der Form . . ist 35 notiert.
27#
發(fā)表于 2025-3-26 08:19:53 | 只看該作者
28#
發(fā)表于 2025-3-26 09:27:18 | 只看該作者
BM 13901: Babylonische Algebra,el?st haben. Allerdings sind einige Frage offen geblieben: Da die Babylonier keine algebraische Schreibweise kannten, mussen sie andere Hilfsmittel gehabt haben, um diese Methoden zu entdecken und sich von ihrer Richtigkeit zu überzeugen.
29#
發(fā)表于 2025-3-26 13:36:23 | 只看該作者
Grundrechenarten,In diesem Kapitel werden wir zeigen, wie man Sexagesimalzahlen addiert, subtrahiert und multipliziert. Die Division werden wir im n?chsten Kapitel nachholen; einen Algorithmus wie unsere schriftliche Division haben die Babylonier allerdings nicht besessen.
30#
發(fā)表于 2025-3-26 18:38:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐水县| 华阴市| 古交市| 连云港市| 嘉荫县| 石林| 凤翔县| 宁德市| 长白| 赤水市| 延庆县| 聊城市| 徐州市| 青州市| 兴安县| 渝北区| 荣昌县| 施甸县| 阿勒泰市| 福清市| 桐城市| 连江县| 鄱阳县| 天台县| 珲春市| 汝阳县| 大方县| 梁平县| 明溪县| 望奎县| 杭锦后旗| 清新县| 汝城县| 茶陵县| 洞口县| 农安县| 涞水县| 保靖县| 武夷山市| 乃东县| 临泉县|