找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematik 2; Geschrieben für Phys Klaus J?nich Textbook 20021st edition Springer-Verlag Berlin Heidelberg 2002 Ableitung.Analysis.Cartan-K

[復(fù)制鏈接]
樓主: Precise
51#
發(fā)表于 2025-3-30 11:23:11 | 只看該作者
Klaus J?nichird edition) retains the topical structure familiar from its predecessors but has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—including developments in:.the existence and uniqueness of solutions;.impact
52#
發(fā)表于 2025-3-30 15:28:41 | 只看該作者
53#
發(fā)表于 2025-3-30 16:32:47 | 只看該作者
Klaus J?nichity of the potentials. For the dynamics, the formulation is given in term of differential measures in order to deal with the non continuity of the velocities that may occur in the solutions..This work therefore owes much to the theories and the numerical scheme developed by J. J. Moreau and M. Jean.
54#
發(fā)表于 2025-3-30 21:52:48 | 只看該作者
Klaus J?nich a contraction. The contraction principle is used to establish the well-posedness of the discrete formulation, to prove the convergence of the algorithm, and to obtain an estimate of the convergence rate. An example shows the sub-optimality of the obtained limit value of the friction coefficient.
55#
發(fā)表于 2025-3-31 03:46:51 | 只看該作者
56#
發(fā)表于 2025-3-31 08:36:09 | 只看該作者
Klaus J?nichity of the potentials. For the dynamics, the formulation is given in term of differential measures in order to deal with the non continuity of the velocities that may occur in the solutions..This work therefore owes much to the theories and the numerical scheme developed by J. J. Moreau and M. Jean.
57#
發(fā)表于 2025-3-31 11:46:23 | 只看該作者
58#
發(fā)表于 2025-3-31 16:06:49 | 只看該作者
59#
發(fā)表于 2025-3-31 17:44:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 罗甸县| 镇康县| 五家渠市| 苍梧县| 四平市| 麻栗坡县| 双鸭山市| 南投县| 武平县| 青河县| 铜鼓县| 阳西县| 静宁县| 庐江县| 慈溪市| 凤阳县| 扶沟县| 濮阳市| 灌阳县| 新田县| 兴业县| 花垣县| 岱山县| 罗平县| 崇州市| 河南省| 开鲁县| 甘德县| 纳雍县| 三门峡市| 梅河口市| 横山县| 罗田县| 兴仁县| 北川| 南丹县| 治多县| 肥乡县| 鲁山县| 锦屏县|