找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Wave Phenomena; Willy D?rfler,Marlis Hochbruck,Birgit Sch?rkhuber Conference proceedings 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:24:25 | 只看該作者
On Hyperbolic Initial-Boundary Value Problems with a Strictly Dissipative Boundary Condition,e regularity assumptions on the coefficients of the differential operator and the boundary condition as well as the boundary itself are quite minimal. Characterizations of strictly dissipative boundary operators are given and the example of Maxwell’s equations is discussed.
52#
發(fā)表于 2025-3-30 14:31:22 | 只看該作者
53#
發(fā)表于 2025-3-30 17:20:49 | 只看該作者
Sparse Regularization of Inverse Problems by Operator-Adapted Frame Thresholding,ralizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholding approach which we show to provide a convergent regularization method with linear convergence rates. These results will be compared to the well-known analysis and synthesis variants of sparse ..-reg
54#
發(fā)表于 2025-3-30 20:47:15 | 只看該作者
55#
發(fā)表于 2025-3-31 04:21:49 | 只看該作者
56#
發(fā)表于 2025-3-31 07:43:48 | 只看該作者
57#
發(fā)表于 2025-3-31 12:58:50 | 只看該作者
58#
發(fā)表于 2025-3-31 16:08:48 | 只看該作者
,Existence and Stability of Klein–Gordon Breathers in the Small-Amplitude Limit,breathers have precise scaling with respect to the small coupling strength .. By using the classical Lyapunov–Schmidt method, we show existence and linear stability of the KG breather from existence and linear stability of the corresponding dNLS soliton. Nonlinear stability, for an exponentially lon
59#
發(fā)表于 2025-3-31 21:12:18 | 只看該作者
60#
發(fā)表于 2025-4-1 01:26:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天峨县| 兴业县| 萝北县| 安阳市| 若羌县| 晋中市| 九江市| 山阴县| 屏东市| 永州市| 蛟河市| 沈丘县| 阳城县| 宁波市| 军事| 兴业县| 天气| 宁国市| 弥勒县| 扶沟县| 大邑县| 陇南市| 靖宇县| 清丰县| 茂名市| 房产| 阿拉善盟| 铜川市| 西藏| 大洼县| 宿州市| 顺义区| 新沂市| 昔阳县| 且末县| 海晏县| 信丰县| 宁陕县| 松桃| 阿勒泰市| 兴海县|