找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Wave Phenomena; Willy D?rfler,Marlis Hochbruck,Birgit Sch?rkhuber Conference proceedings 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:24:25 | 只看該作者
On Hyperbolic Initial-Boundary Value Problems with a Strictly Dissipative Boundary Condition,e regularity assumptions on the coefficients of the differential operator and the boundary condition as well as the boundary itself are quite minimal. Characterizations of strictly dissipative boundary operators are given and the example of Maxwell’s equations is discussed.
52#
發(fā)表于 2025-3-30 14:31:22 | 只看該作者
53#
發(fā)表于 2025-3-30 17:20:49 | 只看該作者
Sparse Regularization of Inverse Problems by Operator-Adapted Frame Thresholding,ralizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholding approach which we show to provide a convergent regularization method with linear convergence rates. These results will be compared to the well-known analysis and synthesis variants of sparse ..-reg
54#
發(fā)表于 2025-3-30 20:47:15 | 只看該作者
55#
發(fā)表于 2025-3-31 04:21:49 | 只看該作者
56#
發(fā)表于 2025-3-31 07:43:48 | 只看該作者
57#
發(fā)表于 2025-3-31 12:58:50 | 只看該作者
58#
發(fā)表于 2025-3-31 16:08:48 | 只看該作者
,Existence and Stability of Klein–Gordon Breathers in the Small-Amplitude Limit,breathers have precise scaling with respect to the small coupling strength .. By using the classical Lyapunov–Schmidt method, we show existence and linear stability of the KG breather from existence and linear stability of the corresponding dNLS soliton. Nonlinear stability, for an exponentially lon
59#
發(fā)表于 2025-3-31 21:12:18 | 只看該作者
60#
發(fā)表于 2025-4-1 01:26:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
军事| 政和县| 霍州市| 金山区| 福贡县| 荥经县| 朝阳县| 于都县| 天柱县| SHOW| 泰顺县| 聂荣县| 泽州县| 信丰县| 龙游县| 衢州市| 宝丰县| 宜黄县| 龙岩市| 卓资县| 怀柔区| 沛县| 漳平市| 临猗县| 宽城| 汝阳县| 清河县| 玉龙| 四川省| 南平市| 平乡县| 宁乡县| 交城县| 蕉岭县| 黄大仙区| 桂平市| 永清县| 浦县| 武功县| 盱眙县| 淳安县|