找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Wave Phenomena; Willy D?rfler,Marlis Hochbruck,Birgit Sch?rkhuber Conference proceedings 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 09:24:25 | 只看該作者
On Hyperbolic Initial-Boundary Value Problems with a Strictly Dissipative Boundary Condition,e regularity assumptions on the coefficients of the differential operator and the boundary condition as well as the boundary itself are quite minimal. Characterizations of strictly dissipative boundary operators are given and the example of Maxwell’s equations is discussed.
52#
發(fā)表于 2025-3-30 14:31:22 | 只看該作者
53#
發(fā)表于 2025-3-30 17:20:49 | 只看該作者
Sparse Regularization of Inverse Problems by Operator-Adapted Frame Thresholding,ralizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholding approach which we show to provide a convergent regularization method with linear convergence rates. These results will be compared to the well-known analysis and synthesis variants of sparse ..-reg
54#
發(fā)表于 2025-3-30 20:47:15 | 只看該作者
55#
發(fā)表于 2025-3-31 04:21:49 | 只看該作者
56#
發(fā)表于 2025-3-31 07:43:48 | 只看該作者
57#
發(fā)表于 2025-3-31 12:58:50 | 只看該作者
58#
發(fā)表于 2025-3-31 16:08:48 | 只看該作者
,Existence and Stability of Klein–Gordon Breathers in the Small-Amplitude Limit,breathers have precise scaling with respect to the small coupling strength .. By using the classical Lyapunov–Schmidt method, we show existence and linear stability of the KG breather from existence and linear stability of the corresponding dNLS soliton. Nonlinear stability, for an exponentially lon
59#
發(fā)表于 2025-3-31 21:12:18 | 只看該作者
60#
發(fā)表于 2025-4-1 01:26:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖边县| 辽源市| 阿拉善左旗| 安陆市| 吉隆县| 两当县| 邵武市| 商丘市| 靖安县| 凤冈县| 曲阜市| 丹江口市| 全州县| 宜兴市| 吉木萨尔县| 陇南市| 芦溪县| 军事| 来安县| 开远市| 邵东县| 荃湾区| 滨州市| 巧家县| 通河县| 泽库县| 封开县| 彝良县| 林周县| 沁水县| 海安县| 常州市| 界首市| 广德县| 宿松县| 通河县| 景谷| 昌江| 贵定县| 丹棱县| 大理市|