找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Surfaces XII; 12th IMA Internation Ralph Martin,Malcolm Sabin,Joab Winkler Conference proceedings 2007 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 落后的煤渣
31#
發(fā)表于 2025-3-27 00:23:04 | 只看該作者
32#
發(fā)表于 2025-3-27 04:11:24 | 只看該作者
33#
發(fā)表于 2025-3-27 06:09:50 | 只看該作者
34#
發(fā)表于 2025-3-27 09:59:26 | 只看該作者
35#
發(fā)表于 2025-3-27 14:46:50 | 只看該作者
Shenglan Liu,Ralph R. Martin,Frank C. Langbein,Paul L. Rosinructural mechanics and dynamics.Presents new developments in.Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling .offers a concise, coherent presentation of the theoretical framework of nonlinear mechanics, computational methods, applications, parametric investigations of nonlin
36#
發(fā)表于 2025-3-27 17:53:43 | 只看該作者
37#
發(fā)表于 2025-3-28 01:48:52 | 只看該作者
38#
發(fā)表于 2025-3-28 02:13:38 | 只看該作者
Quadrangle Surface Tiling Through Contouring, T-junctions. Our main contribution is an extension of the discrete Laplace operator which encompasses several types of line singularities. The resulting two discrete differential 1-forms are either regular, opposite or switched along the singularity graph edges. We show that this modification guara
39#
發(fā)表于 2025-3-28 06:58:17 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:56 | 只看該作者
A Developable Surface of Uniformly Negative Internal Angle Deficit,planar polyhedral net. It is shown that simply-connected surfaces of negative interior curvature cannot be developed. An example is then given of a surface of negative interior curvature with two boundary loops, isomorphic to a cylinder, which is developable.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤庆县| 施秉县| 绥宁县| 汨罗市| 遂宁市| 武乡县| 博罗县| 通河县| 昌宁县| 库车县| 安泽县| 凌海市| 新民市| 青海省| 息烽县| 鹤壁市| 鲁山县| 琼中| 旌德县| 宕昌县| 甘洛县| 高雄市| 嵊泗县| 浮梁县| 安阳市| 浑源县| 正宁县| 札达县| 全州县| 伊金霍洛旗| 视频| 汶上县| 武陟县| 东山县| 焦作市| 新和县| 五河县| 普安县| 灵璧县| 衡山县| 新营市|