找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Ramsey Theory; Jaroslav Ne?et?il,Vojtěch R?dl Book 1990 Springer-Verlag Berlin Heidelberg 1990 Baum.Combinatorics.Komplexit

[復(fù)制鏈接]
樓主: 是消毒
11#
發(fā)表于 2025-3-23 12:59:55 | 只看該作者
12#
發(fā)表于 2025-3-23 17:56:27 | 只看該作者
Ordinal Types in Ramsey Theory and Well-Partial-Ordering TheoryThere is a gap between the infinite Ramsey’s theorem ω → (ω). and its finite version
13#
發(fā)表于 2025-3-23 19:03:28 | 只看該作者
Partite Construction and Ramsey Space SystemsWe prove several Ramsey type theorems for parameter sets, affine and vector spaces by an amalgamation technique known as Partite Construction. This approach yields solution of several open problems and uniform treatment of several strongest results in the area. Particularly we prove Ramsey theorem for systems of spaces.
14#
發(fā)表于 2025-3-23 22:42:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:16 | 只看該作者
16#
發(fā)表于 2025-3-24 06:36:10 | 只看該作者
Topics in Euclidean Ramsey TheoryMany questions in Ramsey Theory can be placed in the following context. We are given a set ., a family . of distinguished subsets of ., and a positive integer .. We would like to decide whether or not the following statement holds: For any partition of . = .. ∪…∪ .. into . classes, there is an . ∈ . and an index . such that . ? ...
17#
發(fā)表于 2025-3-24 11:30:33 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:21 | 只看該作者
20#
發(fā)表于 2025-3-25 00:59:04 | 只看該作者
Shelah’s Proof of the Hales-Jewett Theoremplicity we include here only the proof of the one dimensional case of the theorem, which solves a problem of Graham by showing that the Hales-Jewett function is primitive recursive. The general cases will appear in the full paper of Shelah.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵港市| 无锡市| 泌阳县| 洛川县| 华容县| 美姑县| 布尔津县| 东源县| 嘉黎县| 黄平县| 濮阳市| 马边| 垦利县| 根河市| 万全县| 华容县| 凤庆县| 芦溪县| 泾源县| 武穴市| 鲁甸县| 营口市| 叙永县| 葵青区| 修水县| 乡宁县| 星子县| 栾城县| 资中县| 城口县| 高雄县| 石柱| 清河县| 乌鲁木齐市| 宜城市| 昌吉市| 洛川县| 大丰市| 新沂市| 谢通门县| 宾川县|