找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Ramsey Theory; Jaroslav Ne?et?il,Vojtěch R?dl Book 1990 Springer-Verlag Berlin Heidelberg 1990 Baum.Combinatorics.Komplexit

[復(fù)制鏈接]
樓主: 是消毒
11#
發(fā)表于 2025-3-23 12:59:55 | 只看該作者
12#
發(fā)表于 2025-3-23 17:56:27 | 只看該作者
Ordinal Types in Ramsey Theory and Well-Partial-Ordering TheoryThere is a gap between the infinite Ramsey’s theorem ω → (ω). and its finite version
13#
發(fā)表于 2025-3-23 19:03:28 | 只看該作者
Partite Construction and Ramsey Space SystemsWe prove several Ramsey type theorems for parameter sets, affine and vector spaces by an amalgamation technique known as Partite Construction. This approach yields solution of several open problems and uniform treatment of several strongest results in the area. Particularly we prove Ramsey theorem for systems of spaces.
14#
發(fā)表于 2025-3-23 22:42:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:16 | 只看該作者
16#
發(fā)表于 2025-3-24 06:36:10 | 只看該作者
Topics in Euclidean Ramsey TheoryMany questions in Ramsey Theory can be placed in the following context. We are given a set ., a family . of distinguished subsets of ., and a positive integer .. We would like to decide whether or not the following statement holds: For any partition of . = .. ∪…∪ .. into . classes, there is an . ∈ . and an index . such that . ? ...
17#
發(fā)表于 2025-3-24 11:30:33 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:21 | 只看該作者
20#
發(fā)表于 2025-3-25 00:59:04 | 只看該作者
Shelah’s Proof of the Hales-Jewett Theoremplicity we include here only the proof of the one dimensional case of the theorem, which solves a problem of Graham by showing that the Hales-Jewett function is primitive recursive. The general cases will appear in the full paper of Shelah.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广东省| 仁化县| 宿迁市| 安西县| 砚山县| 德令哈市| 黎平县| 永寿县| 理塘县| 忻城县| 中方县| 武鸣县| 东明县| 财经| 凯里市| 凤凰县| 乐至县| 砀山县| 富锦市| 桂阳县| 寿宁县| 凯里市| 吉林省| 华容县| 温泉县| 石台县| 合江县| 右玉县| 来凤县| 内江市| 福建省| 洞头县| 醴陵市| 方城县| 新沂市| 宁都县| 徐汇区| 上高县| 金溪县| 明溪县| 保靖县|