找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Ramsey Theory; Jaroslav Ne?et?il,Vojtěch R?dl Book 1990 Springer-Verlag Berlin Heidelberg 1990 Baum.Combinatorics.Komplexit

[復(fù)制鏈接]
樓主: 是消毒
11#
發(fā)表于 2025-3-23 12:59:55 | 只看該作者
12#
發(fā)表于 2025-3-23 17:56:27 | 只看該作者
Ordinal Types in Ramsey Theory and Well-Partial-Ordering TheoryThere is a gap between the infinite Ramsey’s theorem ω → (ω). and its finite version
13#
發(fā)表于 2025-3-23 19:03:28 | 只看該作者
Partite Construction and Ramsey Space SystemsWe prove several Ramsey type theorems for parameter sets, affine and vector spaces by an amalgamation technique known as Partite Construction. This approach yields solution of several open problems and uniform treatment of several strongest results in the area. Particularly we prove Ramsey theorem for systems of spaces.
14#
發(fā)表于 2025-3-23 22:42:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:16 | 只看該作者
16#
發(fā)表于 2025-3-24 06:36:10 | 只看該作者
Topics in Euclidean Ramsey TheoryMany questions in Ramsey Theory can be placed in the following context. We are given a set ., a family . of distinguished subsets of ., and a positive integer .. We would like to decide whether or not the following statement holds: For any partition of . = .. ∪…∪ .. into . classes, there is an . ∈ . and an index . such that . ? ...
17#
發(fā)表于 2025-3-24 11:30:33 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:21 | 只看該作者
20#
發(fā)表于 2025-3-25 00:59:04 | 只看該作者
Shelah’s Proof of the Hales-Jewett Theoremplicity we include here only the proof of the one dimensional case of the theorem, which solves a problem of Graham by showing that the Hales-Jewett function is primitive recursive. The general cases will appear in the full paper of Shelah.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
池州市| 阜南县| 威宁| 梨树县| 尼勒克县| 工布江达县| 梓潼县| 连州市| 桂阳县| 军事| 客服| 星座| 灌云县| 宁津县| 南平市| 九江市| 随州市| 济南市| 嘉定区| 克山县| 和田县| 松桃| 翁牛特旗| 合江县| 锡林郭勒盟| 无棣县| 缙云县| 应用必备| 潮安县| 大方县| 乐平市| 宽甸| 广丰县| 时尚| 根河市| 郎溪县| 宝应县| 齐齐哈尔市| 潜山县| 宜黄县| 修水县|