找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Program Construction; 375th Anniversary of J. L. A. Snepscheut Conference proceedings 1989 Springer-Verlag Berlin Heidelberg

[復制鏈接]
樓主: 水平
41#
發(fā)表于 2025-3-28 15:44:35 | 只看該作者
42#
發(fā)表于 2025-3-28 19:15:47 | 只看該作者
Lambert Meertensutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
43#
發(fā)表于 2025-3-29 01:22:24 | 只看該作者
Jayadev Misrautions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
44#
發(fā)表于 2025-3-29 06:12:26 | 只看該作者
45#
發(fā)表于 2025-3-29 07:20:15 | 只看該作者
R. J. R. Back,J. von Wrightutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
46#
發(fā)表于 2025-3-29 11:32:27 | 只看該作者
A. Bijlsmautions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
47#
發(fā)表于 2025-3-29 15:32:48 | 只看該作者
48#
發(fā)表于 2025-3-29 20:06:58 | 只看該作者
Wei Chen,Jan Tijmen Uddingutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
49#
發(fā)表于 2025-3-30 01:55:21 | 只看該作者
E. Pascal Gribomontutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
50#
發(fā)表于 2025-3-30 06:15:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
威信县| 苏州市| 尚志市| 新竹县| 繁峙县| 东台市| 怀柔区| 绥滨县| 安国市| 盈江县| 桂东县| 蓬莱市| 专栏| 温宿县| 沾益县| 浦县| 泰兴市| 根河市| 柞水县| 洪湖市| 拜泉县| 简阳市| 锡林郭勒盟| 肥城市| 双鸭山市| 肃宁县| 阳山县| 保亭| 周宁县| 加查县| 红安县| 永兴县| 兴文县| 托克托县| 兴宁市| 托克逊县| 多伦县| 南昌市| 涡阳县| 邵阳县| 永川市|