找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics of Program Construction; 375th Anniversary of J. L. A. Snepscheut Conference proceedings 1989 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 水平
41#
發(fā)表于 2025-3-28 15:44:35 | 只看該作者
42#
發(fā)表于 2025-3-28 19:15:47 | 只看該作者
Lambert Meertensutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
43#
發(fā)表于 2025-3-29 01:22:24 | 只看該作者
Jayadev Misrautions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
44#
發(fā)表于 2025-3-29 06:12:26 | 只看該作者
45#
發(fā)表于 2025-3-29 07:20:15 | 只看該作者
R. J. R. Back,J. von Wrightutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
46#
發(fā)表于 2025-3-29 11:32:27 | 只看該作者
A. Bijlsmautions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
47#
發(fā)表于 2025-3-29 15:32:48 | 只看該作者
48#
發(fā)表于 2025-3-29 20:06:58 | 只看該作者
Wei Chen,Jan Tijmen Uddingutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
49#
發(fā)表于 2025-3-30 01:55:21 | 只看該作者
E. Pascal Gribomontutions into quasi-periodic solutions with more frequencies. The simplest case is the bifurcation of periodic solutions from steady solutions. The next hardest problem is the bifurcation of quasi-periodic solutions from basic time periodic solutions of fixed frequency. This problem is treated in the
50#
發(fā)表于 2025-3-30 06:15:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 甘孜县| 山西省| 邢台县| 民权县| 宁海县| 秭归县| 阜新| 清流县| 墨江| 揭东县| 清河县| 舒兰市| 攀枝花市| 高淳县| 应用必备| 桐柏县| 冕宁县| 兴仁县| 司法| 鄯善县| 大城县| 中牟县| 廊坊市| 淮安市| 遂昌县| 浦东新区| 淮安市| 布尔津县| 承德市| 开原市| 永济市| 漳平市| 乌什县| 镇巴县| 灌阳县| 原阳县| 讷河市| 九江县| 秦皇岛市| 合山市|