找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics in Computing; An Accessible Guide Gerard O’Regan Textbook 2020Latest edition Springer Nature Switzerland AG 2020 Calculus.Codi

[復(fù)制鏈接]
樓主: Disaster
31#
發(fā)表于 2025-3-26 22:14:36 | 只看該作者
Gerard O’Reganven at a high speed. The algorithm of controlling the steering system during the lane change as proposed herein is the result of optimizing the control process by means of a reference model for the dynamics of vehicle motion with various degrees of simplification. The algorithm includes the determin
32#
發(fā)表于 2025-3-27 04:54:27 | 只看該作者
33#
發(fā)表于 2025-3-27 08:57:02 | 只看該作者
Gerard O’Reganmple and predictable strategic situations (e.g. coordination). In this paper, we begin instead to explore economies where the overall payoff landscape is very complicated (rugged). We propose a model where the payoff of any agent changes in an unpredictable way as soon as any small variation in the
34#
發(fā)表于 2025-3-27 10:01:58 | 只看該作者
Gerard O’Regansent experimental and numerical results concerning diverse bifurcation sequences associated with the dynamics of localized dissipative high currrent-density domains, so-called filaments. In particular, we discuss (i) the transition from a spatially uniform to a stable stationary filament, (ii) the b
35#
發(fā)表于 2025-3-27 14:57:17 | 只看該作者
Gerard O’Reganuilibrium. They often involve switching behaviour, self-generated current or voltage oscillations, current filamentation, field domain formation and solid-state turbulence. In this paper the theory of such instabilities is reviewed with a special emphasis on recent progress in the description of cur
36#
發(fā)表于 2025-3-27 19:57:38 | 只看該作者
Gerard O’Regans in the discrete case (see examples in Chap.?.), we are interested in the classification of their dynamics. After a short review of the basic concepts of Hamiltonian mechanics, we define integrability (and therewith regular motion) in Sect.?.. The non-integrability property is then discussed in Sec
37#
發(fā)表于 2025-3-28 00:11:26 | 只看該作者
Gerard O’Regang the same audience.Endorsed by Giulio Casati, one of the le.The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics
38#
發(fā)表于 2025-3-28 03:46:09 | 只看該作者
39#
發(fā)表于 2025-3-28 09:48:34 | 只看該作者
Gerard O’Regans in the discrete case (see examples in Chap.?.), we are interested in the classification of their dynamics. After a short review of the basic concepts of Hamiltonian mechanics, we define integrability (and therewith regular motion) in Sect.?.. Non-integrability is then discussed in Sect.?.. The add
40#
發(fā)表于 2025-3-28 13:36:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴山县| 石狮市| 常州市| 慈溪市| 依安县| 克拉玛依市| 海晏县| 北碚区| 施秉县| 乡城县| 潍坊市| 高雄县| 德安县| 加查县| 东宁县| 莱阳市| 金堂县| 太谷县| 凌云县| 桦甸市| 麦盖提县| 江西省| 温宿县| 当涂县| 基隆市| 蛟河市| 中牟县| 龙陵县| 吴江市| 宁都县| 枞阳县| 龙井市| 和平区| 喀喇沁旗| 新乡县| 蕉岭县| 锦屏县| 福贡县| 吉木萨尔县| 巴里| 咸阳市|