找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics for Nonlinear Phenomena — Analysis and Computation; In Honor of Yoshikaz Yasunori Maekawa,Shuichi Jimbo Conference proceedings

[復制鏈接]
樓主: 傳家寶
31#
發(fā)表于 2025-3-26 21:40:45 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/m/image/626889.jpg
32#
發(fā)表于 2025-3-27 03:23:27 | 只看該作者
33#
發(fā)表于 2025-3-27 07:53:32 | 只看該作者
34#
發(fā)表于 2025-3-27 12:29:30 | 只看該作者
978-3-319-88316-8Springer International Publishing AG 2017
35#
發(fā)表于 2025-3-27 15:07:05 | 只看該作者
Mathematics for Nonlinear Phenomena — Analysis and Computation978-3-319-66764-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
36#
發(fā)表于 2025-3-27 18:08:52 | 只看該作者
Conference proceedings 2017ed from the international conference held in honor of Professor Yoshikazu Giga’s 60th birthday, the featured research papers and survey articles discuss partial differential equations related to fluid mechanics, electromagnetism, surface diffusion, and evolving interfaces. Specific focus is placed o
37#
發(fā)表于 2025-3-27 23:39:41 | 只看該作者
An Implicit Boundary Integral Method for Interfaces Evolving by Mullins-Sekerka Dynamics,ce. The resulting algorithm thus inherits the benefits of both level set methods and boundary integral methods to simulate the nonlocal front propagation problem with possible topological changes. We present numerical results in both two and three dimensions to demonstrate the effectiveness of the algorithm.
38#
發(fā)表于 2025-3-28 02:26:45 | 只看該作者
39#
發(fā)表于 2025-3-28 08:09:20 | 只看該作者
40#
發(fā)表于 2025-3-28 14:01:29 | 只看該作者
Geometric Interfacial Motion: Coupling Surface Diffusion and Mean Curvature Motion,l problems are described. While sometimes an anisotropic formulation might seem to be preferable, often an isotropic formulation is helpful to consider. Some analytic and numerical results are being presented, with some supporting experimental evidence. Many open questions remain.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安庆市| 天全县| 永嘉县| 常山县| 江孜县| 厦门市| 开鲁县| 浦县| 孟津县| 松桃| 阜城县| 堆龙德庆县| 娄底市| 吕梁市| 高州市| 达日县| 磐安县| 楚雄市| 股票| 额济纳旗| 英德市| 乐业县| 托里县| 滦平县| 于都县| 开阳县| 定西市| 宽甸| 昌江| 宾川县| 贵德县| 乌鲁木齐县| 浦县| 新邵县| 云南省| 连南| 甘孜县| 怀集县| 涡阳县| 慈溪市| 鸡西市|