找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics for Nonlinear Phenomena — Analysis and Computation; In Honor of Yoshikaz Yasunori Maekawa,Shuichi Jimbo Conference proceedings

[復(fù)制鏈接]
樓主: 傳家寶
21#
發(fā)表于 2025-3-25 04:17:20 | 只看該作者
22#
發(fā)表于 2025-3-25 09:33:28 | 只看該作者
Spatial Lipschitz Continuity of Viscosity Solution to Level Set Equation for Evolving Spirals by Eiity solutions to the level set equation for the evolving spirals provided that a suitable approximation of initial data exists. It is established with Bernstein’s method for regularized equation approximating the level set equation, and limiting procedure of solutions tending the approximating param
23#
發(fā)表于 2025-3-25 14:10:50 | 只看該作者
A Hyperbolic Obstacle Problem with an Adhesion Force,lm attached to a water surface or a droplet motion on a planner surface. The surface acts as an obstacle and there may exist adhesion forces when the film or the droplet detach from the obstacle. We consider the case with a positive contact angle in an equilibrium state. We also calculate the moving
24#
發(fā)表于 2025-3-25 17:23:04 | 只看該作者
25#
發(fā)表于 2025-3-25 22:28:58 | 只看該作者
Analysis of a Living Fluid Continuum Model,llposedness and stability in the .-setting are derived. Due to the presence of a Swift-Hohenberg term, global wellposedness in a strong setting for arbitrary initial data in . is available. Based on the existence of global strong solutions, results on linear and nonlinear (in-) stability for the dis
26#
發(fā)表于 2025-3-26 00:32:56 | 只看該作者
A Note on Regularity Criteria for Navier-Stokes System,We use some interpolation inequalities on Besov spaces to show a regularity criterion for .-dimensional Navier-Stokes system.
27#
發(fā)表于 2025-3-26 04:51:50 | 只看該作者
Remarks on Viscosity Solutions for Mean Curvature Flow with Obstacles,Obstacle problems for mean curvature flow equations are concerned. Existence of Lipschitz continuous viscosity solutions are obtained under several hypotheses. Comparison principle globally in time is also discussed.
28#
發(fā)表于 2025-3-26 11:18:12 | 只看該作者
29#
發(fā)表于 2025-3-26 16:08:02 | 只看該作者
Energy Solutions to One-Dimensional Singular Parabolic Problems with , Data are Viscosity SolutionsWe study one-dimensional very singular parabolic equations with periodic boundary conditions and initial data in ., which is the energy space. We show existence of solutions in this energy space and then we prove that they are viscosity solutions in the sense of Giga–Giga.
30#
發(fā)表于 2025-3-26 16:50:49 | 只看該作者
Yasunori Maekawa,Shuichi JimboShowcases a strong selection of papers and recent research presented at the 2015 conferences.Illustrates recent developments in analysis and computation.Perfect for graduate students and researchers i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 03:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新源县| 清远市| 滦南县| 万年县| 巫山县| 上思县| 徐州市| 海宁市| 通城县| 宁津县| 天门市| 吉安县| 滨海县| 凤城市| 滁州市| 旬阳县| 浠水县| 新津县| 嘉兴市| 普定县| 灵璧县| 黑水县| 兴化市| 万盛区| 平陆县| 高邑县| 城口县| 酒泉市| 临安市| 巩义市| 习水县| 新乐市| 怀安县| 南澳县| 加查县| 天峻县| 中西区| 盐边县| 濮阳市| 天台县| 隆化县|