找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics for Life Science and Medicine; Yasuhiro Takeuchi,Yoh Iwasa,Kazunori Sato Book 2007 Springer-Verlag Berlin Heidelberg 2007 Epid

[復制鏈接]
樓主: 導彈
21#
發(fā)表于 2025-3-25 03:19:09 | 只看該作者
Yasuhiro Takeuchi,Yoh Iwasa,Kazunori SatoA fascinating survey of the theory of dynamical systems in biology and medicine.An accessible introduction for students, also including much food-for-thought for researchers.Includes supplementary mat
22#
發(fā)表于 2025-3-25 08:52:23 | 只看該作者
23#
發(fā)表于 2025-3-25 14:31:01 | 只看該作者
24#
發(fā)表于 2025-3-25 19:48:54 | 只看該作者
Pathogen Competition and Coexistence and the Evolution of Virulence,s low and there is no immunity to the disease. If disease prevalence is high, strain competition rather selects for low disease fatality. A strain which would go extinct on its own can coexist with a more virulent strain by protecting from it, if it has strong vertical transmission.
25#
發(fā)表于 2025-3-25 21:26:10 | 只看該作者
26#
發(fā)表于 2025-3-26 01:38:05 | 只看該作者
27#
發(fā)表于 2025-3-26 06:41:04 | 只看該作者
Basic Knowledge and Developing Tendencies in Epidemic Dynamics, In this chapter, some basic ideas of modelling the spread of infectious diseases, the main concepts of epidemic dynamics, and some developing tendencies in the study of epidemic dynamics are introduced, and some results with respect to the spread of SARS in China are given.
28#
發(fā)表于 2025-3-26 10:18:15 | 只看該作者
Delayed SIR Epidemic Models for Vector Diseases?,vised to assume that the birth rate is not independent of the total population size. For all models, we summarize the known mathematical results on stability of the equilibria and permanence. We also give some open problems and our conjectures on the threshold for an epidemic to occur.
29#
發(fā)表于 2025-3-26 14:13:55 | 只看該作者
Book 2007nd the evolution of virulence and the rapid evolution of viruses within a host. Each chapter will serve to introduce students and scholars to the state-of-the-art in an exciting area, to present new results, and to inspire future contributions to mathematical modeling in?life science and medicine..
30#
發(fā)表于 2025-3-26 19:56:42 | 只看該作者
1618-7210 er will serve to introduce students and scholars to the state-of-the-art in an exciting area, to present new results, and to inspire future contributions to mathematical modeling in?life science and medicine..978-3-642-07077-8978-3-540-34426-1Series ISSN 1618-7210 Series E-ISSN 2197-5647
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
拉萨市| 宜宾市| 府谷县| 财经| 兴城市| 太保市| 康马县| 余姚市| 侯马市| 阳西县| 嘉义市| 淮南市| 甘德县| 临沧市| 元朗区| 鸡西市| 沾化县| 邹平县| 如皋市| 信阳市| 涪陵区| 县级市| 镶黄旗| 永仁县| 密云县| 塔河县| 辽宁省| 天等县| 抚远县| 广灵县| 梨树县| 辉南县| 桑日县| 邳州市| 亚东县| 宁波市| 突泉县| 牟定县| 平湖市| 稻城县| 射洪县|