找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Music; A Diderot Mathematic Gerard Assayag,Hans Georg Feichtinger,Jose Francis Book 2002 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
查看: 16935|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:58:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Mathematics and Music
副標(biāo)題A Diderot Mathematic
編輯Gerard Assayag,Hans Georg Feichtinger,Jose Francis
視頻videohttp://file.papertrans.cn/627/626842/626842.mp4
概述Includes supplementary material:
圖書(shū)封面Titlebook: Mathematics and Music; A Diderot Mathematic Gerard Assayag,Hans Georg Feichtinger,Jose Francis Book 2002 Springer-Verlag Berlin Heidelberg
描述In Western Civilization Mathematics and Music have a long and interesting history in common, with several interactions, traditionally associated with the name of Pythagoras but also with a significant number of other mathematicians, like Leibniz, for instance. Mathematical models can be found for almost all levels of musical activities from composition to sound production by traditional instruments or by digital means. Modern music theory has been incorporating more and more mathematical content during the last decades. This book offers a journey into recent work relating music and mathematics. It contains a large variety of articles, covering the historical aspects, the influence of logic and mathematical thought in composition, perception and understanding of music and the computational aspects of musical sound processing. The authors illustrate the rich and deep interactions that exist between Mathematics and Music.
出版日期Book 2002
關(guān)鍵詞Algebra; Ethnomusicology; Ethonomathematics; History of Mathematics; Mathematics; Music; calculus; geometry
版次1
doihttps://doi.org/10.1007/978-3-662-04927-3
isbn_softcover978-3-642-07836-1
isbn_ebook978-3-662-04927-3
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

書(shū)目名稱(chēng)Mathematics and Music影響因子(影響力)




書(shū)目名稱(chēng)Mathematics and Music影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Music網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Mathematics and Music網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Music被引頻次




書(shū)目名稱(chēng)Mathematics and Music被引頻次學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Music年度引用




書(shū)目名稱(chēng)Mathematics and Music年度引用學(xué)科排名




書(shū)目名稱(chēng)Mathematics and Music讀者反饋




書(shū)目名稱(chēng)Mathematics and Music讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:06 | 只看該作者
Book 2002the name of Pythagoras but also with a significant number of other mathematicians, like Leibniz, for instance. Mathematical models can be found for almost all levels of musical activities from composition to sound production by traditional instruments or by digital means. Modern music theory has bee
板凳
發(fā)表于 2025-3-22 03:14:31 | 只看該作者
Book 2002. It contains a large variety of articles, covering the historical aspects, the influence of logic and mathematical thought in composition, perception and understanding of music and the computational aspects of musical sound processing. The authors illustrate the rich and deep interactions that exist between Mathematics and Music.
地板
發(fā)表于 2025-3-22 08:14:37 | 只看該作者
The Topos Geometry of Musical Logic,topos-theoretic geometrization of musical logic implies a progressively geometric flavour of all rational interactions with music, in particular when implemented on graphical interfaces of computer environments.
5#
發(fā)表于 2025-3-22 10:27:19 | 只看該作者
The Formalization of Logic and the Issue of Meaning,fferent matter from our present knowledge of logic. Then, I shall define the periods I have chosen to show how these questions were dealt with historically. I shall go on to analyse how the relationship of logical calculus to the question of its meaning was viewed during these different periods.
6#
發(fā)表于 2025-3-22 16:20:43 | 只看該作者
Universal Prediction Applied to Stylistic Music Generation,niversal prediction algorithm that can be applied to an arbitrary sequence regardless of its model. Operations such as improvisation or assistance to composition can be realised on the resulting representation.
7#
發(fā)表于 2025-3-22 20:35:04 | 只看該作者
8#
發(fā)表于 2025-3-23 00:57:47 | 只看該作者
,Lagrange, “Working Mathematician” on Music Considered as a Source for Science,pose of such an account written in 1813, was less to explain the scientific achievements of a man, than to portray what a great scientist should be.. Delambre then goes as far as telling us a socially bad story about Lagrange. And it concerns Lagrange’s taste for music, or better said his misuse of music.
9#
發(fā)表于 2025-3-23 04:46:27 | 只看該作者
Musical Analysis Using Mathematical Proceedings in the XXth Century,ionship hidden in music or in sound. Their basic assumption was the direct link between the use of ratio 3/2 or a limited number of simple intervals in the ground bass and a possible rational explanation of music.
10#
發(fā)表于 2025-3-23 06:49:23 | 只看該作者
Expressing Coherence of Musical Perception in Formal Logic,uth within a framework of spatio-temporal representations and perception-based musical information processing. The framework provides a way for defining a semantics for the coherence of musical perception.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 富蕴县| 利津县| 垣曲县| 普陀区| 平顶山市| 吐鲁番市| 和林格尔县| 防城港市| 金坛市| 永吉县| 新民市| 铜梁县| 什邡市| 濮阳县| 南和县| 新兴县| 启东市| 定州市| 武宁县| 边坝县| 滨海县| 竹溪县| 高淳县| 施秉县| 饶阳县| 罗源县| 屏南县| 双流县| 陆良县| 娱乐| 铜鼓县| 资中县| 安龙县| 当阳市| 宁都县| 社旗县| 商水县| 台安县| 青海省| 巴南区|