找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Methodology for Economics; Applications, Proble Wolfgang Eichhorn,Winfried Glei?ner Textbook 2016 Springer International Pu

[復(fù)制鏈接]
樓主: deferential
41#
發(fā)表于 2025-3-28 17:31:36 | 只看該作者
,Nonlinear Optimisation with One or Several Objectives: Kuhn–Tucker Conditions,tional equation. For linear regression the method of least squares is used. Next extrema under equality constraints are investigated. We also use envelope theorems and the LeChatelier Principle to determine extrema. The case of inequality constraints is dealt with, too. The chapter ends with an excu
42#
發(fā)表于 2025-3-28 19:52:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:50:39 | 只看該作者
Differential Equations,ut we also discuss some nonlinear important examples: the Bernoulli and the Riccati equations. The latter is used to investigate the saturation of markets, the logistic growth. As linear differential equations of second order are very important in mathematical modelling they are discussed in full de
44#
發(fā)表于 2025-3-29 04:24:50 | 只看該作者
45#
發(fā)表于 2025-3-29 09:33:42 | 只看該作者
46#
發(fā)表于 2025-3-29 11:45:49 | 只看該作者
racting with a nonlinear atomic medium modeled as an oscillator; and a double-well BEC, the atomic condensate in each well modeled by an oscillator Hamiltonian with appropriate nonlinear interactions. Under unitary evolution, the bipartite state is known to exhibit features similar to wave packet re
47#
發(fā)表于 2025-3-29 19:01:44 | 只看該作者
48#
發(fā)表于 2025-3-29 22:40:47 | 只看該作者
49#
發(fā)表于 2025-3-30 03:50:44 | 只看該作者
50#
發(fā)表于 2025-3-30 07:33:37 | 只看該作者
Wolfgang Eichhorn,Winfried Glei?ner this area. Non-classical logics are logical formalisms that violate or go beyond classical logic laws, and their specific features make them particularly suited to describing and reason about aspects of social interaction. The richness and diversity of non-classical logics mean that this area is a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武陟县| 乌什县| 绥江县| 得荣县| 奉贤区| 松江区| 太仆寺旗| 会东县| 孟州市| 紫云| 江西省| 综艺| 江源县| 枣阳市| 彰化县| 通化县| 张北县| 桐庐县| 麻江县| 邢台市| 顺昌县| 岳阳市| 子洲县| 遵化市| 娄烦县| 台安县| 南乐县| 黄冈市| 丘北县| 略阳县| 喀喇| 洛浦县| 化隆| 凌云县| 郎溪县| 龙海市| 项城市| 仙居县| 泰顺县| 磴口县| 雷波县|