找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Methodology for Economics; Applications, Proble Wolfgang Eichhorn,Winfried Glei?ner Textbook 2016 Springer International Pu

[復(fù)制鏈接]
樓主: deferential
41#
發(fā)表于 2025-3-28 17:31:36 | 只看該作者
,Nonlinear Optimisation with One or Several Objectives: Kuhn–Tucker Conditions,tional equation. For linear regression the method of least squares is used. Next extrema under equality constraints are investigated. We also use envelope theorems and the LeChatelier Principle to determine extrema. The case of inequality constraints is dealt with, too. The chapter ends with an excu
42#
發(fā)表于 2025-3-28 19:52:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:50:39 | 只看該作者
Differential Equations,ut we also discuss some nonlinear important examples: the Bernoulli and the Riccati equations. The latter is used to investigate the saturation of markets, the logistic growth. As linear differential equations of second order are very important in mathematical modelling they are discussed in full de
44#
發(fā)表于 2025-3-29 04:24:50 | 只看該作者
45#
發(fā)表于 2025-3-29 09:33:42 | 只看該作者
46#
發(fā)表于 2025-3-29 11:45:49 | 只看該作者
racting with a nonlinear atomic medium modeled as an oscillator; and a double-well BEC, the atomic condensate in each well modeled by an oscillator Hamiltonian with appropriate nonlinear interactions. Under unitary evolution, the bipartite state is known to exhibit features similar to wave packet re
47#
發(fā)表于 2025-3-29 19:01:44 | 只看該作者
48#
發(fā)表于 2025-3-29 22:40:47 | 只看該作者
49#
發(fā)表于 2025-3-30 03:50:44 | 只看該作者
50#
發(fā)表于 2025-3-30 07:33:37 | 只看該作者
Wolfgang Eichhorn,Winfried Glei?ner this area. Non-classical logics are logical formalisms that violate or go beyond classical logic laws, and their specific features make them particularly suited to describing and reason about aspects of social interaction. The richness and diversity of non-classical logics mean that this area is a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达孜县| 霍邱县| 西丰县| 斗六市| 大同市| 册亨县| 许昌市| 乌兰察布市| 咸阳市| 黄骅市| 孝昌县| 淮南市| 临漳县| 内黄县| 四会市| 中卫市| 乌兰浩特市| 任丘市| 高尔夫| 太湖县| 西平县| 浦县| 岑巩县| 尉犁县| 平顺县| 公主岭市| 太保市| 普安县| 襄樊市| 垦利县| 保山市| 手机| 定兴县| 宁波市| 巴东县| 内黄县| 霍林郭勒市| 墨江| 新竹市| 轮台县| 菏泽市|