找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Methodology for Economics; Applications, Proble Wolfgang Eichhorn,Winfried Glei?ner Textbook 2016 Springer International Pu

[復(fù)制鏈接]
樓主: deferential
41#
發(fā)表于 2025-3-28 17:31:36 | 只看該作者
,Nonlinear Optimisation with One or Several Objectives: Kuhn–Tucker Conditions,tional equation. For linear regression the method of least squares is used. Next extrema under equality constraints are investigated. We also use envelope theorems and the LeChatelier Principle to determine extrema. The case of inequality constraints is dealt with, too. The chapter ends with an excu
42#
發(fā)表于 2025-3-28 19:52:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:50:39 | 只看該作者
Differential Equations,ut we also discuss some nonlinear important examples: the Bernoulli and the Riccati equations. The latter is used to investigate the saturation of markets, the logistic growth. As linear differential equations of second order are very important in mathematical modelling they are discussed in full de
44#
發(fā)表于 2025-3-29 04:24:50 | 只看該作者
45#
發(fā)表于 2025-3-29 09:33:42 | 只看該作者
46#
發(fā)表于 2025-3-29 11:45:49 | 只看該作者
racting with a nonlinear atomic medium modeled as an oscillator; and a double-well BEC, the atomic condensate in each well modeled by an oscillator Hamiltonian with appropriate nonlinear interactions. Under unitary evolution, the bipartite state is known to exhibit features similar to wave packet re
47#
發(fā)表于 2025-3-29 19:01:44 | 只看該作者
48#
發(fā)表于 2025-3-29 22:40:47 | 只看該作者
49#
發(fā)表于 2025-3-30 03:50:44 | 只看該作者
50#
發(fā)表于 2025-3-30 07:33:37 | 只看該作者
Wolfgang Eichhorn,Winfried Glei?ner this area. Non-classical logics are logical formalisms that violate or go beyond classical logic laws, and their specific features make them particularly suited to describing and reason about aspects of social interaction. The richness and diversity of non-classical logics mean that this area is a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 00:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛隆县| 峨眉山市| 磴口县| 海南省| 谷城县| 邹平县| 广东省| 蓬安县| 乌拉特前旗| 当雄县| 洛南县| 石柱| 南川市| 南充市| 南康市| 阳东县| 安庆市| 东城区| 安龙县| 河北省| 聂荣县| 靖江市| 镇安县| 永康市| 奈曼旗| 永川市| 柏乡县| 沂水县| 扶风县| 临清市| 甘德县| 五大连池市| 香格里拉县| 瑞安市| 修武县| 华安县| 鲁甸县| 翼城县| 望奎县| 锦州市| 金寨县|