找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Its History; John Stillwell Textbook 20022nd edition Springer-Verlag New York 2002 algebraic number theory.elliptic functi

[復制鏈接]
樓主: Corticosteroids
11#
發(fā)表于 2025-3-23 13:04:41 | 只看該作者
Projective Geometry,twentieth-century mathematics texts. Figure 8.1 shows a fifteenth-century artistic example from Wright (1983), p. 41, alongside a twentieth-century mathematical example from the exposé of Grünbaum (1985).]
12#
發(fā)表于 2025-3-23 16:14:24 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:42 | 只看該作者
Complex Numbers in Algebra, (Section 6.7), classification of cubic curves (Section 8.4), branch points (Section 10.5), genus (Section 11.3), and behavior of elliptic functions (Sections 11.6 and 12.6)—are clarified by the introduction of complex numbers.
14#
發(fā)表于 2025-3-23 23:56:48 | 只看該作者
John StillwellStilwell‘s style and exposition are unique.New examples on Chinese and Indian number theory
15#
發(fā)表于 2025-3-24 03:15:56 | 只看該作者
16#
發(fā)表于 2025-3-24 08:05:44 | 只看該作者
Springer-Verlag New York 2002
17#
發(fā)表于 2025-3-24 14:22:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:55:19 | 只看該作者
The Theorem of Pythagoras,If there is one theorem that is known to all mathematically educated people, it is surely the theorem of Pythagoras. It will be recalled as a property of right-angled triangles: the square of the hypotenuse equals the sum of the squares of the other two sides (Figure 1.1).
19#
發(fā)表于 2025-3-24 19:33:56 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:57 | 只看該作者
Analytic Geometry,The basic idea of analytic geometry is the representation of curves by equations, but this is not the whole idea. If it were, then the Greeks would be considered the first analytic geometers.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 01:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
朝阳市| 叙永县| 竹北市| 绥芬河市| 青岛市| 梁山县| 阳春市| 济源市| 大竹县| 合阳县| 岳普湖县| 钟山县| 苗栗县| 寻甸| 顺平县| 博兴县| 神木县| 富源县| 汾西县| 朝阳县| 普陀区| 榆树市| 宜兴市| 孟连| 莎车县| 行唐县| 宜川县| 繁昌县| 马边| 黄山市| 贵南县| 呼玛县| 彭阳县| 万安县| 青河县| 宾阳县| 明溪县| 建水县| 甘孜县| 鲁山县| 丽江市|