找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Its History; John Stillwell Textbook 20022nd edition Springer-Verlag New York 2002 algebraic number theory.elliptic functi

[復(fù)制鏈接]
樓主: Corticosteroids
11#
發(fā)表于 2025-3-23 13:04:41 | 只看該作者
Projective Geometry,twentieth-century mathematics texts. Figure 8.1 shows a fifteenth-century artistic example from Wright (1983), p. 41, alongside a twentieth-century mathematical example from the exposé of Grünbaum (1985).]
12#
發(fā)表于 2025-3-23 16:14:24 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:42 | 只看該作者
Complex Numbers in Algebra, (Section 6.7), classification of cubic curves (Section 8.4), branch points (Section 10.5), genus (Section 11.3), and behavior of elliptic functions (Sections 11.6 and 12.6)—are clarified by the introduction of complex numbers.
14#
發(fā)表于 2025-3-23 23:56:48 | 只看該作者
John StillwellStilwell‘s style and exposition are unique.New examples on Chinese and Indian number theory
15#
發(fā)表于 2025-3-24 03:15:56 | 只看該作者
16#
發(fā)表于 2025-3-24 08:05:44 | 只看該作者
Springer-Verlag New York 2002
17#
發(fā)表于 2025-3-24 14:22:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:55:19 | 只看該作者
The Theorem of Pythagoras,If there is one theorem that is known to all mathematically educated people, it is surely the theorem of Pythagoras. It will be recalled as a property of right-angled triangles: the square of the hypotenuse equals the sum of the squares of the other two sides (Figure 1.1).
19#
發(fā)表于 2025-3-24 19:33:56 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:57 | 只看該作者
Analytic Geometry,The basic idea of analytic geometry is the representation of curves by equations, but this is not the whole idea. If it were, then the Greeks would be considered the first analytic geometers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上虞市| 汾西县| 祁阳县| 华容县| 金塔县| 五寨县| 伊吾县| 横峰县| 贵溪市| 金寨县| 连城县| 卓资县| 昭苏县| 全州县| 青田县| 晋城| 武陟县| 怀仁县| 石屏县| 柞水县| 浮梁县| 体育| 金湖县| 建水县| 兴海县| 华坪县| 禹城市| 乌苏市| 北海市| 涞源县| 天水市| 封丘县| 灵台县| 朔州市| 吴忠市| 和林格尔县| 千阳县| 凤城市| 泗阳县| 长葛市| 开化县|