找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematics and Its History; John Stillwell Textbook 20022nd edition Springer-Verlag New York 2002 algebraic number theory.elliptic functi

[復(fù)制鏈接]
樓主: Corticosteroids
11#
發(fā)表于 2025-3-23 13:04:41 | 只看該作者
Projective Geometry,twentieth-century mathematics texts. Figure 8.1 shows a fifteenth-century artistic example from Wright (1983), p. 41, alongside a twentieth-century mathematical example from the exposé of Grünbaum (1985).]
12#
發(fā)表于 2025-3-23 16:14:24 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:42 | 只看該作者
Complex Numbers in Algebra, (Section 6.7), classification of cubic curves (Section 8.4), branch points (Section 10.5), genus (Section 11.3), and behavior of elliptic functions (Sections 11.6 and 12.6)—are clarified by the introduction of complex numbers.
14#
發(fā)表于 2025-3-23 23:56:48 | 只看該作者
John StillwellStilwell‘s style and exposition are unique.New examples on Chinese and Indian number theory
15#
發(fā)表于 2025-3-24 03:15:56 | 只看該作者
16#
發(fā)表于 2025-3-24 08:05:44 | 只看該作者
Springer-Verlag New York 2002
17#
發(fā)表于 2025-3-24 14:22:48 | 只看該作者
18#
發(fā)表于 2025-3-24 14:55:19 | 只看該作者
The Theorem of Pythagoras,If there is one theorem that is known to all mathematically educated people, it is surely the theorem of Pythagoras. It will be recalled as a property of right-angled triangles: the square of the hypotenuse equals the sum of the squares of the other two sides (Figure 1.1).
19#
發(fā)表于 2025-3-24 19:33:56 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:57 | 只看該作者
Analytic Geometry,The basic idea of analytic geometry is the representation of curves by equations, but this is not the whole idea. If it were, then the Greeks would be considered the first analytic geometers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大余县| 昭通市| 海原县| 洛南县| 都兰县| 屏边| 丹寨县| 安丘市| 阿鲁科尔沁旗| 珠海市| 永兴县| 芜湖市| 芮城县| 波密县| 通山县| 连云港市| 乳源| 淮安市| 昔阳县| 邵阳市| 承德县| 丰城市| 陆良县| 晋中市| 南通市| 洪江市| 福海县| 睢宁县| 德清县| 平江县| 乌鲁木齐市| 昂仁县| 五原县| 兰溪市| 嘉善县| 吉林省| 肃南| 福海县| 屏东市| 德惠市| 怀柔区|