找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Mathematics and Computation in Music; 7th International Co Mariana Montiel,Francisco Gomez-Martin,Octavio A. Conference proceedings 2019 S

[復(fù)制鏈接]
樓主: Clinton
51#
發(fā)表于 2025-3-30 11:09:29 | 只看該作者
Categories, Musical Instruments, and Drawings: A Unification Dreamategories may help navigate within the complexity of several branches of contemporary music research, giving it a unitarian character. Such a ‘unification dream,’ that we can call ‘cARTegory theory,’ also includes metaphorical references to topos theory.
52#
發(fā)表于 2025-3-30 12:29:00 | 只看該作者
The Hierarchy of Rameau Groupsd ., which transform all types of seventh or ninth chords or more generally, any chords formed of stacks of major or minor thirds. These groups form a hierarchy for inclusion. We study on musical examples the ability of these operators to show symmetries in the progression of seventh chords.
53#
發(fā)表于 2025-3-30 16:48:13 | 只看該作者
0302-9743 2019, held in Madrid, Spain, in June 2019. The 22 full papers and 10 short papers presented were carefully reviewed and selected from 48 submissions. The papers feature research that combines mathematics or computation with music theory, music analysis, composition, and performance. They are organiz
54#
發(fā)表于 2025-3-30 23:44:27 | 只看該作者
55#
發(fā)表于 2025-3-31 02:03:53 | 只看該作者
Distant Neighbors and Interscalar Contiguitiesexatonic and octatonic cycles that uses the principle of minimal voice leading in the diatonic system. At the same time it provides a method to detect chromatic wormholes, i.e. parsimonious connections between diatonic chords, which are not contiguous in the system of second order Clough-Myerson sca
56#
發(fā)表于 2025-3-31 06:36:23 | 只看該作者
Daniel Harasim,Thomas Noll,Martin Rohrmeieres. This book covers the social, economic and ecological dimensions of NTFPs and closes with an examination of future prospects and research directions..978-3-642-26755-0978-3-642-17983-9Series ISSN 1614-9785 Series E-ISSN 2627-1516
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大渡口区| 齐齐哈尔市| 麻栗坡县| 寿宁县| 兴隆县| 海安县| 灵璧县| 叙永县| 勐海县| 花垣县| 株洲市| 北海市| 大新县| 雷山县| 青州市| 新沂市| 抚宁县| 鲁甸县| 云霄县| 盐源县| 翁源县| 马龙县| 汝城县| 宿迁市| 泰来县| 昌宁县| 北辰区| 监利县| 凤城市| 黄浦区| 会同县| 教育| 泸定县| 射阳县| 通山县| 黄冈市| 合江县| 潮安县| 恭城| 宿松县| 民乐县|